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Executive Summary 

This deliverable contains a detailed description of the information related to the specifications of the 

hardware architecture of the ECOSCALE system as well as the ECOSCALE demonstration platform. 

Specifically, this document separates into key sections and sub-sections the significant elements that are 

essential to the two aforementioned objects. Hence, the specifications defined in this deliverable are as 

follows. 

First, the document presents the specifications related to the ECOSCALE hardware architecture and, 

specifically, those that have to do with i) how the existing UNIMEM architecture is adapted to the 

ECOSCALE context and ii) the proposed novel UNILOGIC architecture, which will be defined, designed 

and implemented within the ECOSCALE project. 

Secondly, the UNIMEM and UNILOGIC architectures can effectively be integrated within the 

ECOSCALE system only if both support a set of specifications which cover the required virtualisation 

support. Specifically, and within the context of the overall system, the virtualisation support specifications 

are defined in relation to three key sub-elements, i.e. the HW Virtualisation block, the user-space direct 

accesses and, finally, the reconfigurable accelerator block. 

Following the virtualisation support specifications are the specifications of the ECOSCALE system 

interconnections, which are also very important. In this context, the information is split into i) the 

interconnection protocols of interest, ii) an overview of specifications for the AXI bus protocol that shall 

also be extensively used in the system, and iii) the specifications of STNoC which is a novel architecture 

for industrial on-chip communication network infrastructures. 

Finally, this document presents the specifications of the actual hardware platform that is to host the 

complete ECOSCALE system. This is comprised of i) an initial simpler development card and ii) the actual 

hardware prototype; the initial specifications for both are presented in the final sections of this document. 

The former refers to the hardware specifications of the core of the initial demonstration platforms whereas 

the latter refers to the hardware specifications of the hardware system that will be implemented within the 

ExaNest project and which will be used for the full demonstration of the ECOSCALE approach.  
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1. Introduction  
This document will address an important aspect of the ECOSCALE project, namely that of defining the 

architectural specifications of the ECOSCALE system and its sub-elements. In other words, the 

specifications of the high-level node hardware architecture including the CPUs, the reconfigurable devices, 

the memory, and the I/O sub-systems will be derived. The specifications are mainly based on the exact 

requirements of the two ECOSCALE real-world applications and they include those of the hardware 

prototype that will be utilized in the evaluation of the end-platform when executing the real-world 

applications. 

It is a fundamental need to have a clearly defined set of specifications for the ECOSCALE system prior to 

actually commencing with its development. Here the fundamental specifications related to key elements of 

this system are presented in the following order and in their respective sections and sub-sections. First, the 

overall ECOSCALE architecture is presented for context, and then the specifications related to the 

UNIMEM and UNILOGIC architectures are presented. The UNIMEM architecture is a pre-existing 

technology that has been adapted to the context of the ECOSCALE requirements, whereas UNILOGIC is a 

novel technology to be developed within ECOSCALE. In order for both to materialise, a set of 

specification are laid out in Section 2. 

Subsequently, the ECOSCALE system will comprise of various sub-components and sub-elements such as 

the hardware accelerator blocks. The integration of such components within the UNIMEM/UNILOGIC 

architecture raise several issues regarding the memory addressing, therefore, an important elementof the 

ECOSCALE system is that of sharing reconfigurable resources in hardware (hardware-assisted 

virtualisation). Section 3 addresses the virtualisation support specifications specifically in relation to i) the 

hardware virtualisation block, ii) user-space direct accesses and iii) the reconfigurable accelerator blocks. 

Of equal importance is the set of specifications related to the ECOSCALE system interconnects and this is 

addressed in Section 4. This refers to the interconnect protocols that will be used by the system such as the 

AMBA AXI4 communication protocol and the STNoC programmable system-on-chip communication 

network. 

Finally, the ECOSCALE system is to be implemented in two different stages, first a demonstration 

platform that may consist of off-the-shelf development boards and second ata hardware prototype 

developed and manufactured within the context of the sister project ExaNest which will specifically 

address the requirements/specifications of ECOSCALE; strictly hardware-related specifications related to 

those two types of platforms are presented in Section 5. 

 

1.1 Glossary of Acronyms 

Acronym Definition 

AMBA  Advanced Microprocessor Bus Architecture 

AXI  Advanced eXtensible Interface 

D Deliverable 

EC European Commission 

GA Global Address 

GPU Graphics Processing Unit 

HCP High Performance Computing 

HLS High Level Synthesis 
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MPI  Message Passing Interface 

PA Physical Address 

WG Workgroup 

WP Work-Package 
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2. The ECOSCALE Architecture 

This section offers an initial description of the ECOSCALE architecture, i.e. it offers a high-level 

description of the system architecture. It therefore serves as a stepping stone for the material that follows in 

later sections. These sections extensively analyse all the various sub-elements that make up the complete 

system. 

Overall, the ECOSCALE architecture will expand a memory technology known as UNIMEM (introduced 

in the Euroserver project
1
 and described in more detail in Section 2.1) by providing the systems software 

with the option to move tasks and processes closer to data instead of moving data around, significantly 

reducing the data traffic and related energy consumption. In order to expand this approach within the 

ECOSCALE project, a novel Partitioned Global Address Space (PGAS) memory system will be developed 

which will be globally accessible from the general-purpose CPU cores as well as ECOSCALEôs 

UNILOGIC architecture (described in more detail in Section 2.2) through regular loads and stores. 

The UNILOGIC architecture, developed as part of this project, will operate within an environment of 

virtualized hardware accelerators which will allow for the parallel execution of either different applications 

and/or different parts of the same application. As a result, the ECOSCALE PGAS system shall extend the 

UNIMEM memory architecture through a shared partitioned address space, while efficiently extending the 

notion of global cache coherence so as to improve energy efficiency and scalability. 

 

Figure 1: High-radix partitioning for HPC applications  

Subsequently, the system architecture will be mainly comprised of CPUs, memory units and reconfigurable 

blocks (i.e. FPGA-based accelerators as explained below) all implemented to operate in a highly parallel 

manner. Driven by the characteristics and trends of future High Performance Computing (HPC) 

applications and following the high-radix partitioning of an HPC application shown in Figure 1, the 

proposed architecture partitions the hardware resources hierarchically, i.e. CPUs, reconfigurable logic, 

memories, SSDs etc., into several interconnected sub-systems (corresponding to the PGAS partitions of the 

application) which we call Compute Nodes; the Compute Nodes are further partitioned into several, what 

we call, Worker nodes, each of which consists of a multi-core CPU tightly coupled with a memory and a 

                                                           
1
http://www.euroserver-project.eu/ 
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reconfigurable block; the capabilities and characteristics of each of those Nodes are analytically described 

in the following paragraphs. The number of Workers per Compute Node (i.e. the size of a PGAS partition) 

depends on the physical structure of the platform.  

Thus, one Compute Node, Figure 2, creates an entire and independent PGAS system (or part of a system) 

and each one includes several Worker nodes; this approach offers the following:  

¶ UNIMEM : a shared partitioned global address space that allows Worker nodes to communicate 

via regular loads and stores without global cache coherence and 

¶ UNILOGIC : shared partitioned reconfigurable resources that share the UNIMEM space which 

comprises only of software tasks.  

 

Figure 2: The ECSOCALE Compute Node architecture 

The benefit of the ECOSCALE architecture is that it overcomes limitations exhibited by other existing 

architectures that either require a conventional global cache coherence mechanism, which simply cannot 

scale, or support only DMA operations, which are not efficient for small data transfers such as messages to 

synchronize remote threads or for configuring a remote peripheral. UNILOGIC supports both bulk DMA 

transfers and direct load/store instructions between Workers. 

The proposed HPC architecture, where i) each Compute Node is a PGAS sub-system providing a shared 

address space and reconfigurable acceleration logic, and ii ) MPI is used for communication between 

Compute Nodes following the application topology, is shown in Figure 2. It consists of several Worker 

nodes communicating through a multi-layer interconnection. The actual number of Workers inside a 

Compute Node depends on the integration capabilities of future technologies. The ECOSCALE prototype 

is expected to support 64 Workers (16 daughter cards x 4 FPGAs) per Compute Node as described in 

Section 5.2. Each Worker is an independent computing unit that can execute, fork, and join tasks or threads 

of an HPC application in-parallel with the other Workers. It includes a multi-core CPU, a reconfigurable 

block and an off-chip DRAM memory, all communicating through a cache-coherent L0 interconnect. 

Furthermore, the communication and synchronization between the Workers is performed through a multi-

layer non-coherent interconnection, which allows load and store commands, DMA operations, interrupts, 

and synchronization between the Workers of a Compute Node (following the UNIMEM architecture 

described in Section 2.1). The Compute Nodes are PGAS sub-systems that correspond to the application's 

PGAS-based partitions shown in Figure 1. 
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In order to match the application logical topology of Figure 1, the Compute Nodes are connected through a 

multi-layer interconnection network and communicate with MPI. The ExaNeSt project
2
 focuses on this 

multi-layer interconnection topology while ECOSCALE focuses on a single Compute Node. As we explain 

in the next Sections there is close collaboration between these two projects. 

 

Figure 3: Block diagram of ECOSCALE Worker  

The communication overhead between a CPU and a hardware accelerator, i.e. the Reconfigurable Block 

inside a Worker node, is one of the most crucial challenges. A few years ago, only explicit memory 

transfers between the host memory and the accelerator's memory were supported, like in a GPU. Recent 

technological advances allow the integration of the host CPU and hardware accelerators on the same chip, 

and thus hardware accelerators can now directly access the host memory. Such a typical ARM-based 

system is depicted on the left of Figure 3. However, there are still important limitations, described below, 

that are tackled by the ECOSCALE system. 

In the state-of-the-art architecture depicted in Figure 3, the ARM Cache Coherent Interconnect supports 

two types of coherent ports in order to provide hardware coherency to the whole system: i) ACE ports, 

which can be used by masters containing and sharing caches, such as a processor, and ii ) ACE-lite ports, 

which can be used by masters that have private caches/memory. ACE-lite ports allow the masters to access 

the shared caches of other masters and they are traditionally used for hardware accelerators such as GPUs 

and FPGAs, shown in the figure. 

On the right side of Figure 3, the block diagram of an ECOSCALE Worker node is shown. The proposed 

architecture will extend such a typical architecture as follows. Accelerator blocks act as what is known in 

UNIMEM as a Unit of Compute, and hence they can interface directly with any other UNIMEM Unit of 

Compute where each unit caches its local data coherently. Each accelerator can also cache its local data and 

likewise provide coherent access from remote UNIMEM units. 

Virtualization enables multiple applications or threads of an application to share a single multi-core CPU in 

order to maximize the utilization of the CPU resources and hence reduce power consumption. Similarly, 

                                                           
2
http://www.exanest.eu/ 



D3.1 Specifications of HW Architecture and Prototype 

 
 

Page 11 of 35 
 

This document is Confidential, and was produced under the ECOSCALE project (EC contract 671632). 
 

 

our architecture will support coarse-grain time-sharing of the reconfigurable resources through partial 

runtime reconfiguration (implemented by the HW Context Switching block as described in D3.2). 

Moreover, it will support fine-grain sharing of those FPGA resources, where a function implemented in 

hardware can be ñcalledò by different tasks or threads of an HPC application in parallel, through the HW 

Virtualization block shown in Figure 3 (see also Section 3). The Virtualization block and the HLS tool 

provide a mechanism to execute multiple function calls in a fully pipelined fashion. 

Sharing of the limited reconfigurable resources between Workers is very important. Thus, within a 

Compute Node, any Worker can access any Reconfigurable block (even remote blocks that belong to other 

Workers) through the multi-layer interconnect (L0 and L1 interconnects) shown in Figure 2. Moreover, the 

L0 Interconnect in this system provides two external ports: one ACE-lite port and one standard 

AXI (connection to L1 interconnect of Figure 3) that can be used by remote Reconfigurable blocks to make 

coherent accesses. However, since this is not an ACE port (no snooping protocol is supported) the remote 

Reconfigurable block should flush its data cache when execution is finished or disable its data cache (and 

would not be as efficient as a local one). 

2.1 The UNIMEM Architecture in ECOSCALE 

The UNIMEM architecture
3
 aims to provide a scalable distributed system solution enabling direct remote 

memory accesses and shared memory. Toward this end the architecture offers a) a global address space and 

b) remote coherent accesses. Both are described below. 

Global Address Space: The UNIMEM architecture can be deployed in a system consisting of several 

"coherence islands", where a coherence island includes one or more processors, a cache coherent memory, 

various peripherals and an external port for remote accesses. All accesses inside the coherence island are 

cache coherent. In the ECOSCALE architecture, a "Worker" is one such coherence island and a collection 

of Workers form an ECOSCALE Compute Node (i.e. an ECOSCALE PGAS partition), which supports the 

UNIMEM architecture. Each Worker supports a physical address mapping for accessing its local memory, 

its local peripherals and the external world (i.e. memories and peripherals of other Workers in the 

ECOSCALE PGAS partition). This "window" to the external world provides direct memory and I/O 

accesses (through standard load/store instructions) to other Workers and it is used to provide a global 

address space in the Compute Node, as shown in Figure 4. The Worker physical interface to the remote 

world can be anything (PCIe, AXI, Ethernet, etc.).  

                                                           
3
The UNIMEM architecture of the ECOSCALE prototype will be accessed through an API that will be defined and 

provided as the project progresses in close collaboration with the EUROSERVER project. 
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Figure 4: Accesses in the external ñwindowò of the local address space are translated to global 

memory access. 

As an example, Figure 5 shows the address mapping of the physical space inside a Juno board
4
. In this case 

the Juno board is a Worker and the PCIe interface can be used for accessing the external world.  

 

Figure 5: Address mapping of Juno. The yellow region can be used as the external ñwindowò in 

order to perform accessed in the global address space. 

The size of the window in the Juno board is limited to 256 GBytes and might be smaller than the global 

address space (i.e. the total size of the memories that are in the system is bigger than 256 GBytes). In such 

cases, a Worker cannot directly access the whole address space but only a portion of it (i.e. 256 GBytes in 

our example). A translation mechanism in hardware will either provide a dynamic or static mapping 

between the Worker physical address space and the global address space. This mechanism is included in 

the "Global to PHY" and "PHY to Global" blocks shown in Figure 4. 

If the window is large enough to support the entire global address space, then the Worker can directly 

access any memory in the system without the need of any complicated translation mechanism in hardware. 

This will be the case in ECOSCALE, thus static mapping will be used. Assuming that each Juno-based 

                                                           
4
 http://www.arm.com/products/tools/development-boards/versatile-express/juno-arm-development-platform.php 
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Worker wants to expose 16 GBytes of memory to the global address space, then we can have up to 16 

Workers (256 GBytes / 16 GBytes per Worker) in the Compute Node. In this way, the window of 256 

GBytes can be statically partitioned into 16 memory domains, each one providing accesses to a Juno-based 

Worker in the Compute Node. 

 

Figure 6: Partitioning of 256-GByte window into 16 regions, each one corresponding to a Worker in 

the PGAS. 

Remote Cache-Coherent Accesses: Extending the aforementioned remote memory accesses, UNIMEM 

offers cache coherency in a novel manner, which is much more scalable than the conventional solutions. 

Within a UNIMEM architecture a page can be cached only by a single Worker and thus the architecture 

does not allow the same physical page to move around the caches of the Workers. On one hand this 

approach requires data locality in the system. On the other hand, this approach provides a simple and 

scalable architecture since it does not require any global cache-coherence mechanism in hardware. 

Following this approach, the UNIMEM architecture supports two memory models: remote page borrowing 

and shared memory. In the remote page borrowing model when a Worker runs out of local memory it can 

borrow memory pages from a remote Worker. Such a borrowed page can be accessed only by the borrower 

Worker and not by any other Worker in the system. For example in Figure 7, Worker 0 has borrowed the 

red page from the memory of Worker 1. In this memory model the red page is cached only by Worker 0, 

which is also the only Worker that can access it. 

 

Figure 7: Worker 0 borrows a remote memory page from Worker 1. This page is cached and 

accessed only by Worker 0. 
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In the shared memory model, Figure 8, the red page can be accessed by any Worker in the system. In this 

case the page is cached only by Worker 1 (i.e. by the local Worker of the page) and any access coming 

from other Workers (for example from Worker 0) should first check for a hit in the cache of Worker 1.  

 

Figure 8: Red page is shared between Worker 0 and Worker 1.All accesses pass through the cache of 

Worker 1. 

2.2 The UNILOGIC Architecture 

In ECOSCALE each Worker supports local reconfigurable resources for accelerating OpenCL workgroups 

in hardware. ECOSCALE takes advantage of the global address space and remote coherent memory 

accesses (shared memory model) provided by UNIMEM and extend them in certain ways so as to 

implement the UNILOGIC architecture, which provides efficient distributed reconfigurable acceleration.  

Overall, UNILOGIC supports the following cases: 

¶ A Worker can ñuseò the reconfigurable accelerator blocks of remote Workers. 

¶ A reconfigurable accelerator block can be accessed in parallel (i.e. shared) by many Workers. This 

is further described in Section 3. 

In Figure 9, Worker 0 can access the reconfigurable block of Worker 1 directly (through load/store 

instructions, red arrow). In this way Worker 0 can send a command to the reconfigurable block of Worker 1 

in order to trigger a new hardware execution of an OpenCL workgroup. The command includes the 

addresses of the arguments of the OpenCL workgroup following a call-by-reference approach as explained 

in Section 3.1. The memory space of the reconfigurable blocks is in the global address space 

(ñECOSCALE memoryò region shown in Figure 6) thus allowing Worker 0 to directly access any 

Reconfigurable Block in the Compute Node.  

In a similar way, in order to execute the OpenCL workgroup in hardware, the Reconfigurable Block can 

perform remote coherent accesses (green arrow) to the memory of Worker 0 since the memory of Worker 0 

is in the global address space (ñJuno memoryò in Figure 6). In this way the Reconfigurable Block can 

directly fetch the input arguments of the accelerated workgroup from Worker 0 as well as directly write the 

output arguments to Worker 0. 



D3.1 Specifications of HW Architecture and Prototype 

 
 

Page 15 of 35 
 

This document is Confidential, and was produced under the ECOSCALE project (EC contract 671632). 
 

 

 

Figure 9: Worker 0 can directly send a command to the Reconfigurable Block of Worker 1 and the 

Reconfigurable Block can directly access the memory of Worker 0. 
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3. Hardware Virtualization Support  

One unique and very important feature of our architecture is that it supports full and efficient virtualization 

of the hardware resources. That is the reconfigurable accelerators can be shared by supporting multiple 

calls from the same or different applications/processes. Thereby, the ECOSCALE architecture is expected 

to improve resource utilization and as a consequence improve performance and/or energy efficiency. The 

main novel functionalities/modules of the proposed Virtualization scheme are the following: 

(1) Hardware virtualization block: this is a wrapper around the reconfigurable accelerator(s) that 

manages multiple calls to the same (or to multiple) accelerators, scheduling their execution and 

handling their memory accesses 

(2) Direct access to a shared coherent memory space (based on UNIMEM) from: 

a. the OpenCL kernels executed on reconfigurable device(s), 

b. the OpenCL kernels executed on CPU(s) of the Worker (if the runtime decides that some 

kernels should be executed in SW), and 

c. the code executed on the host CPU, 

in order to reduce the need for data copies and support a zero-copy approach.  

(3) A module performing address translation in hardware, in order to allow multiple 

applications/processes to share the virtualized reconfigurable accelerators. 

The above points are explained in detail in the subsequent Sections 3.1 and 3.2.  

To give an overview of the virtualization support in the ECOSCALE architecture, Figure 10 shows how we 

can execute multiple calls of the same OpenCL kernel in parallel, without interference among their local 

and private memory spaces. Each OpenCL kernel call in our system can be mapped to multiple workers, 

and multiple calls can map to one worker. The basic unit of scheduling is a work-group (WG), which is an 

atomic unit of execution. Since the content of local and private memories in OpenCL does not need to be 

preserved across WG boundaries, this simplifies the management of preemption and sharing. The runtime 

described in D3.3 is in charge of dispatching WG execution requests to individual virtualization blocks (per 

worker) which in turn exploits the reconfigurable HW blocks, each implementing a WG of a kernel. We 

consider that the runtime has already configured the FPGA logic to implement the required HW WG(s) 

functionality in every worker it needs to dispatch work on, using the support described in D3.2. Moreover, 

the runtime should allocate a memory-mapped request queue fromthe Virtualization Block found in each 

associated worker; this could happen during the clCreateCommandQueue call. 

Upon reception of a WG execution request in its incoming request queue, the Virtualization Block 

programs the WG configuration registers and schedules the WG onto the set of available reconfigurable 

accelerators. For each queued WG execution request the Virtualization Block needs to remember only if it 

is scheduled, running or done. It can mix executions of the kernel work-groups originating from different 

applications, or from different calls of the same kernel in an application, as well as provide Quality of 

Service by controlling the rate at which the workgroups are executed. An FPGA may also include a number 

of the same work-group implementations, which corresponds to the number of the outstanding work-groups 

that can be scheduled in parallel by the Virtualization Block. Multiple workers in a node also can have 

multiple FPGAs each with multiple WG implementations, in order to further increase performance and 

flexibility.  
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Figure 10. The Virtualization block accepts several calls of the same kernel and schedules their work 

groups to the reconfigurable accelerator, which in turn can execute multiple work groups in parallel. 

3.1 HW Virtualization Block 
The hardware virtualization block provides the functionality required to share a reconfigurable accelerator 

block across different contexts. The definition of context refers to the following cases: 

¶ kernel calls from threads that belong to the same application/process 

¶ kernel calls from threads that belong to different applications/processes 

¶ independent kernel calls from the same application/process thread 

In ECOSCALE, a reconfigurable accelerator block consists of a number of hardware functional units that 

implement work-group(s)and are translated from the corresponding OpenCL kernels via high-level 

synthesis (HLS) as described in D3.2. An OpenCLNDRangeKernel call (clEnqueueNDRangeKernel) from 

an application submits a number of independent work-groups that can be executed concurrently on the 

available functional units. One virtualization block per type of hardware work-group (reconfigurable 

accelerator block) is required and this virtualization block is responsible for the kernel calls scheduled on 

its associated worker (coherence island). 

 

Work-Group Generation 

To illustrate the generation of multiple independent work-groups from OpenCL code we use the example 

code shown in Figure 11. The code presents a generic implementation of SAXPY,stands for Single-

precision Alpha XPlus Y(Y = aX + Y), and isa very popular Level-1 operation (vector) in the BLAS 

package (Basic Linear Algebra Subprograms) which is used by many scientificand HPC applications. The 

reqd_work_group_size(4,1,1)attribute in this example code instructs that theSAXPY kernel should 

operatein work-groups of 4 work-items in the 1
st
dimension (say dimension X) of the 3-

DimensionalOpenCLiteration space (say 3 dimensions named X-Y-Z). 
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__kernel void __attribute__ ((reqd_work_group_size( 4,  1,  1)))  
SAXPY (__global float * x, __global float * y, float  a) {  
constint i = get_global_id ( 0); // 0: Global 1 st  Dimension (X) index  
 
     y[i] += a * x[i];  
}  

Figure 11: A generic OpenCL implementation of SAXPY Level-1 BLAS Routine 

Based on the size and dimensions of the input and output arrays an NDRangeKernelcall of the SAXPY 

kernel will generate a number of independent work-groups each of local size [X:4, Y:1, Z:1](4 work-items) 

that can execute concurrently. For illustration purposes letôs assume 3-dimensionalarrays of size [X:8, Y:4, 

Z:6] that are allocated in contiguous memory space and give a global size of 8x4x6work-items, as shown in 

Figure 12.AnNDRangeKernel call that covers the full global size will generate a number of work-groups 

which is computed by dividing the global size of each dimension by the local size of each dimension: 

ὢȡψȟὣȡτȟὤȡφ

ὢȡτȟὣȡρȟὤȡρ
ὢȡςȟὣȡτȟὤȡφ 

Thus, the iteration space will have 48 work-groups (2x4x6), each with 4 work-items. Global indexing of 

3D array elements, i.e. get_global_id(X|Y|Z) etc., requires the base pointers of the arrays, the 3D global 

size, the 3Dlocal size of the work-group, and a 3D work-group ID as depicted in Figure 12 with the WGXYZ 

notation. As computed above, the range of work-group IDs in the X dimension is [0.. 1] , in the Y 

dimension is [0.. 3] , and in the Z dimension is [0.. 5] . 

 

 

Figure 12: Splitting of OpenCLNDRangeKernel into work -groups 

From the description above it becomes apparent that the only difference between OpenCL work-group 

executions for a specific kernel is the 3D work-group ID. The base array addresses remain the same,the 3D 

global size is fixed for a specific NDRangeKernel call, and local 3D size of the work-group is fixed (at the 

time of the NDRangeKernel call or even at compile-time).Pseudo-code that generates the 3D work-group 

IDs for an NDRangeKernelcall is shown in Figure 13. 
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void ÃÌ%ÎÑÕÅÕÅ.$2ÁÎÇÅ+ÅÒÎÅÌƽÇÌÏÂÁÌƗ ËÅÒÎÅÌƗ ƛƾ ǅ 
int x,y,z;  

 

  for (z= 0; z<(global.sizes.z/kernel.sizes.z); z++ )  

    for (y= 0; y<(global.sizes.y/kernel.sizes.y); y++)  

      for (x= 0; x<(global.sizes.x/kernel.sizes.x); x++)  

dispatch(kernel, kernel.sizes, global. sizes, x, y, z);   
}  
 

Figure 13: Pseudo-code for the generation of work-groups from anNDRangeKernel call 

 

Work-Group Scheduling 

The virtualization block includes a hardware scheduler that dispatches the concurrent software work-groups 

onto the available hardware functional units that implement work-groups in the reconfigurable accelerator 

block. The hardware scheduler helps the runtime software to exploit the available hardware parallelism 

(multiple functional units)in a per work-group granularity, i.e. each work-group runs to completion. The 

scheduler exposes a ñRequest Queueò (FIFO)interface to allow dispatching multiple work-groups and/or 

ranges of work-groups (as described later in this section). The request queue can be memory-mapped in the 

virtual address space and may be maintained purely in the memory of the reconfigurable block (BRAMs), 

orin the standard host memory, or in both those memory structures. The number of parallel functional units 

in the reconfigurable accelerator block can be reconfigured at run-time and depends on the availability of 

reconfigurable/FPGA resources at any point in time as described in D3.2. 

Figure 14shows the functionality of the hardware scheduler when a single application dispatches a number 

of work-groups for execution. In the case of a single application, the NDRangeKernel execution will 

exploit the available hardware parallelism to execute faster and increase the overall throughput. Figure 

14also exemplifies scheduling the work-groups of Figure 12on two SAXPY functional units (hardware 

work-groups). The hardware scheduler dispatches the next work-group in the head of the request queue 

(FIFO), onto the first-ready functional unit in a round-robin fashion. This scheduling policy allows work-

groups to complete out-of-order and improve utilization. In this example, work-group WG010 takes longer 

than usual to execute, possibly because of longer memory access time, and WG110 completes earlier. The 

hardware schedulerpermitsWG020 to start immediately on the available functional unit released by WG110. 

Dispatching work-groups from a single application, requires the hardware scheduler to program the base 

argument addresses/values, the3D global size, and the 3D local size only once for all functional units. For 

subsequent work-group executions, the scheduler updates only the 3D work-group ID. 
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Figure 14: Scheduling Work-Groups onto the available HW functional units 

Figure 15 presents the functionality of the virtualized hardware scheduler when multiple applications 

(1éM)dispatch work-groups for execution on the available hardware blocks (1éN). In the case of 

multiple applications, work-groups from different applications/processes are interleaved on the available 

hardware functional units(work-groups) to improve resource utilization. To support multiple applications, 

the virtualization block schedules work-groups from multiple, per-application (or per-context) ñRequest 

Queuesò. 

Figure 15 also depicts scheduling the work-groups of Figure 12dispatched from multiple applications on 

two SAXPY functional units (hardware work-groups).The virtualized scheduler serves the multiple (two) 

request queues in a round-robin fashion and at a per work-group granularity. The next work-group to be 

executed is dispatched on the first-ready functional unit in a round-robin fashion. This scheduling policy 

also allows work-groups to complete out-of-order and improve utilization. The scheduler might implement 

various alternative policies to ensure fairness, e.g. deficit round-robin based on execution cycles, or QoS 

aware scheduling. In the example, the ñblackò WG100 takes longer than usual to execute, possibly because 

of longer memory access time, and the ñgreenò WG100 completes earlier. The hardware scheduler permits 

the ñblackò WG010 to start immediately on the available functional unit released by the ñgreenò WG100, so 

the functional units might execute work-groups from different contexts at every work-group boundary. 

Dispatching work-groups from multiple contexts, requires the hardware scheduler to program the base 

argument addresses/values, the 3D global size, and the 3D local size every time a functional unit switches 

to a different context. For subsequent work-group executions from the same context on the same functional 

unit, the scheduler updates only the 3D work-group ID, e.g. in Figure 15 the ñgreenò WG100 after the 

ñgreenò WG000 on the ñorangeò SAXPY. 

 

SAXPY

SAXPY
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Figure 15: Scheduling work-groups from multiple applications on the available HW functional units 

 

Command Interface 

The hardware virtualization block request queues support the following commands: 

¶ Execute Work-Group: This command requests the execution of a single work-group. It can 

directly implement the clEnqueueTaskOpenCL construct. The runtime software should provide the 

following fields to execute a work-group correctly: 

o workgroup_id_x: The ID of the 1
st
 dimension (dimension X), 32-bits. 

o workgroup_id_y: The ID of the 2
nd

dimension (dimension Y) if applicable, otherwise 0. 

o workgroup_id_z: The ID of the 3
rd
dimension (dimension Z) if applicable, otherwise 0. 

o global_size_x: The global number of work-items in dimension X, 32-bits. 

o global_size_y: The global number of work-items in dimension Y if applicable, otherwise 1. 

o global_size_z: The global number of work-items in dimension Zif applicable, otherwise 1. 

o local_size_x: The local number of work-items in dimension X if the kernel 

callsget_local_size(0) to dynamically adjust its operation and work with varying number of 

X work-items or if the reqd_work_group_size(X,Y,Z) attribute is not present, otherwise 

this field can be unspecified, 32-bits. 

o local_size_y: The local number of work-items in dimension Y if the kernel 

callsget_local_size(1) to dynamically adjust its operation and work with varying number of 

Y work-items or if the reqd_work_group_size(X,Y,Z) attribute is not present, otherwise 

this field can be unspecified, 32-bits. 

o local_size_z: The local number of work-items in dimension Z if the kernel 

callsget_local_size(2) to dynamically adjust its operation and work with varying number of 

Z work-items or if the reqd_work_group_size(X,Y,Z) attribute is not present, otherwise 

this field can be unspecified, 32-bits. 

SAXPY

SAXPY
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o num_workgroups_x: The number of work-groups in the X dimension if the kernel calls 

get_num_groups(0), otherwise this field can be unspecified, 32-bits. 

o num_workgroups_y: The number of work-groups in the Y dimension if the kernel calls 

get_num_groups(1), otherwise this field can be unspecified, 32-bits. 

o num_workgroups_z: The number of work-groups in the Z dimension if the kernel calls 

get_num_groups(2), otherwise this field can be unspecified, 32-bits. 

o global_offset_x:The offset used to calculate the global ID of a work-item in the X 

dimension, helps the implementation of clEnqueueNDRangeKernel, normally 0, 32-bits. 

o global_offset_y:The offset used to calculate the global ID of a work-item in the Y 

dimension, helps the implementation of clEnqueueNDRangeKernel, normally 0, 32-bits. 

o global_offset_z:The offset used to calculate the global ID of a work-item in the 

Zdimension, helps the implementation of clEnqueueNDRangeKernel, normally 0, 32-bits. 

o Arguments:A number (N) of 64-bit values representing the arguments of kernel in the 

order specified by the clSetKernelArgOpenCL command. If an argument is a pointer, this 

is the virtual address. 

o Status:The status of the current command is one the following: (a) SCHEDULED, (b) 

RUNNING, (c) DONE. SCHEDULED is when the software issues the command. 

RUNNING when the hardware scheduler has dispatched the command onto an accelerator. 

DONE when the hardware has completed executing this work-group. 

 

¶ Execute Work-Group Range: This command requests the execution of a range of work-groups. 

This command can directly implement the clEnqueueNDRangeKernelOpenCL construct and 

behaves like the pseudo code in Figure 13.The runtime software should provide the all the fields 

required for a single work-group plus the following additional fields: 

o workgroup_id_end_x: The ID of the last work-group in the range of the 1
st
 dimension 

(dimension X), 32-bits. The ID of the first work-group in the range of the 1
st
 dimension is 

specified in the field workgroup_id_x. 

o workgroup_id_end_y: The ID of the last work-group in the range of the the 2
nd

dimension 

(dimension Y) if applicable, otherwise the value workgroup_id_y, 32-bits. The ID of the 

first work-group in the range of the 2
nd

 dimension is specified in the field workgroup_id_y. 

o workgroup_id_end_z: The ID of the last work-group in the range of the the 3
rd
dimension 

(dimension Z) if applicable, otherwise the value workgroup_id_z, 32-bits. The ID of the 

first work-group in the range of the 3
rd
 dimension is specified in the field workgroup_id_z. 

 

¶ Barrier: This command helps software to be notified, via the status flag, when all commands that 

have been issued before the barrier have completed. Moreover, this command acts as a fence and 

prevents reordering between previous and next commands. 

o Status: The status of the barrier is one of the following: (a) SCHEDULED, (b) DONE. 

SCHEDULED is when the software issues the command. DONE when the hardware has 

reached the barrier. 

 

¶ Translation Setup: This command can be used by the software to setup the translation table for a 

given process/context as discussed in Section 3.2. 
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3.2 User-space Direct Accesses 
As described in Section 2.2, a Worker can directly access a remote Reconfigurable Block and the remote 

Reconfigurable Block can directly access the memory of a Worker. These memory accesses are routed by 

the local interconnects of the Workers and the global interconnect of the UNIMEM architecture. There are 

three different address spaces involved in this scenario: 

¶ The Virtual Address (VA) space, which is the set of ranges of virtual addresses that an Operating 

System (OS) makes available to a user application. Thus, the user application can perform 

load/store operations only in the VA space. 

¶ The Physical Address (PA) space, which provides an address mapping for routing the memory 

accesses inside a Worker. The source of such memory accesses can be the processor or the external 

port of the Worker and the destination can be the local memory, the local memory-mapped I/O 

devices, or the memory-mapped external port. The OS maps virtual pages to physical pages by 

configuring the MMU of the processor. The MMU is responsible for translating virtual pages to 

physical pages.  

In a UNIMEM architecture the address mapping of the PA space includes a large region for direct 

accesses to the external world (i.e. a large window to memories and I/O devices of remote 

Workers). In ECOSCALE this window is large enough to support all the shared memories and 

memory-mapped I/O devices of the PGAS, i.e. the Global Address space described below. 

¶ The Global Address (GA) space, which provides an address mapping for routing the memory 

accesses inside a PGAS. The source and the destination of such memory accesses can be the 

external port of any Worker or any Reconfigurable Block in the PGAS. In ECOSCALE the shared 

memories in the PGAS (i.e. the total GA space) is smaller than the window of the PA space, thus 

the translation of an external PA page (i.e. a PA page belonging to the external window) to a GA 

page or vice versa is trivial. The ñPHY to Globalò and ñGlobal to PHYò blocks simply remove or 

append some bits from/to the address. 

 

Figure 16: Virtual, Physical and Global Address Spaces. 

The red arrows in Figure 16 show the transitions between the address spaces for a remote memory access 

sent from an application running on Worker 0 to the Reconfigurable Block in Worker 1. The green arrows 

show the transitions between the address spaces for a remote memory access sent from the Reconfigurable 

Block in Worker 1 to Worker 0. 
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The Reconfigurable Block performs remote accesses in order to read or write the arguments of the 

accelerated workgroup. The PAôs of such accesses are generated using the information included in 

ñtriggerò commands issued by the user application running on Worker 0 (see Section 3.1). However, the 

application can only provide VAôs in the ñtriggerò command since it runs in the VA space. So the 

Reconfigurable Block has to generate a PA from the corresponding VA. In order to perform this 

translation, we will investigate several different approaches as listed below. 

A first promising approach is to use an I/O MMU, which translates VAôs to PAôs in hardware. In 

ECOSCALE we use an address translation table, which provides the translation of VAôs to PAôs. During 

the initialization/configuration phase of the application, the application issues system calls in order to 

configure the address translation table of the remote Reconfigurable Block it wants to use (red arrows in 

Figure 17).Each entry of the translation table includes the mapping of a Worker ID (WID) and a VA page 

to a PA page. Next the application can trigger the execution of a workgroup using the VAôs that are 

included in the remote translation table without the intervention of the OS (green arrow). Finally, the 

Reconfigurable Accelerator generates VAôs which are translated to PAôs by the translation block in order 

to be routed to the correct destination (purple arrow). 

 

Figure 17: Address Translation Table used to translate VAôs of the arguments of a workgroup to 

PAôs. 

The aforementioned mechanism can work only if the following conditions are met: 

¶ The data accessed by the Accelerator block is pinned in the memory of Worker 0. Essentially the 

purple arrow should not access a page that is not in the memory of Worker 0 and generate a page 

fault. 

¶ The Translation Table can always provide a physical address. This means that all the virtual pages 

accessed by the Accelerator block should be included in the Translation Table. So if the data of the 

arguments of an accelerated workgroup crosses several physical pages then the user has to send 

multiple configuration commands. In case of a miss in the Translation Table the Reconfigurable 

Block will signal an interrupt to Worker 0, stating that the translation table is not configured 

properly. 

Another approach that will be studied is to bypass the Translation Table (i.e. the requests initiated from the 

Accelerator block will not go through the Translation Table). This is useful if the Accelerator block can 

generate directly physical addresses, which is possible only if Worker 0 can provide physical addresses to 
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the Accelerator block (green arrow). In this case the user application should either store the physical 

addresses of the arguments of the accelerated OpenCL workgroup or it has to make a system call. 

Finally we will investigate the use of the ARM SMMU (System Memory Management Unit)
5
 included in 

the Processing System of the Ultrascale+ FPGA translating the VA of incoming memory accesses to PA. 

While this seems to be the most efficient approach it might be hard to program and use an ARM SMMU 

since several limitations have been noticed in the past (for example in the Juno board the SMMU supports a 

single channel) while several functionalities are not explained in detail in the SMMU specifications (for 

example allocating and assigning SMMU channels to different applications is not explained).  

3.3 Reconfigurable Accelerator Block 
Each reconfigurable acceleration block implements one work-group (WG) of an OpenCL kernel. Multiple 

blocks implementing the same WG can be allocated to the same or to different FPGAs, in order to achieve 

more parallelism. Multiple applications that call the same kernel can use the same reconfigurable 

accelerator block through the virtualization block, in order to share resources. The reconfigurable 

accelerator block receives the kernel arguments and the WG identifier from the virtualization block, and 

accesses the system memory via the UNIMEM mechanism. For more details about how these blocks are 

handled at design time, compilation time, and execution time the reader is referred to deliverable D3.2. 

  

                                                           
5
http://infocenter.arm.com/help/index.jsp?topic=/com.arm.doc.ihi0062b/index.html 
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4. Interconnection  
The Xilinx Vivado development tool provides full featured AXI interconnect interfaces. In the initial 

project phase, these embedded interconnects will be used to validate the basics of the project architecture. 

In the second phase the AXI interconnect will be substituted by the more efficient STNoC communication 

architecture which will be deployed in the programming logic of the ECOSCALE boards. STNoC offers 

better scalability, routing and quality of service, as well as parallelism when compared to the generic 

embedded AXI interconnects that will be utilized in the first implementation of the ECOSCALE 

architecture. 

4.1 Interconnection protocols 
The Xilinx Zynq FPGAs embed an AXI-based multilevel interconnect, offering support for ACE/ACE-lite 

coherent protocols and classical AXI3/AXI4 protocols. ARM AXI interconnection protocols are 

extensively used in industry and the academic world. Specifications for these protocols can be obtained for 

free from ARM's website
6
 and are also described in the Xilinx  documentations

7
, that can be obtained freely. 

4.2 AMBA 
As reported in WIKIPEDIA, the ARM Advanced Microcontroller Bus Architecture (AMBA) is an open-

standard, on-chip interconnect specification for the connection and management of functional blocks in 

system-on-a-chip (SoC) designs. It facilitates development of multi-processor designs with large numbers 

of controllers and peripherals. Since its inception, the scope of AMBA has, despite its name, gone far 

beyond micro controller devices 

AMBA was introduced by ARM in 1996. The first AMBA buses were Advanced System Bus (ASB) and 

Advanced Peripheral Bus (APB). In its second version, AMBA 2, ARM added AMBA High-performance 

Bus (AHB) that is a single clock-edge protocol. In 2003, ARM introduced the third generation, AMBA 3, 

including AXI to reach even higher performance interconnect and the Advanced Trace Bus (ATB) as part 

of the CoreSight on-chip debug and trace solution. In 2010 the AMBA 4 specifications were introduced 

starting with AMBA 4 AXI, then in 2011 extending system wide coherency with AMBA 4 ACE. These 

protocols are today the de facto standard for 32-bit and 64-bit embedded processors' Network on Chip 

(NoC). 

4.3 Network on chip (NOC) 
A key element in the design of ECOSCALE is the global on-chip communication infrastructure, because its 

throughput, latency and power consumption set the limit to the overall performance of the overall 

computing platform. The traditional shared bus approach exhibits its limits as the number of integrated 

processing cores (CPUs and Reconfigurable cores) increases. While gate delay scales with each new 

technology node, global wire delay increases and can be kept constant only by inserting repeaters. For this 

reason, shared bus communication standards are being substituted by multi-layer interconnects, now 

commonly referred as NoC, when designing many-core systems. The NoC paradigm leverages the 

networking and parallel computing domain experience into the SoC world. It is implemented by a layered 

packet-switched micro-networks that include Physical, Network and Transport layers. STNoC is a high end 

novel NoC developed by STMicroelectronics and already utilized in the most advanced 

STMicroelectronicsô SoCs. 

                                                           
6
http://infocenter.arm.com/help/index.jsp?topic=/com.arm.doc.ihi0022d/index.html 

7
http://www.xilinx.com/support/documentation/ip_documentation/axi_ref_guide/v13_4/ug761_axi_reference_guide.pdf 
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Figure 18: The NoC paradigm 

4.4 STNoC overview 
At a glance, STNoC is a source-based routing wormhole switching NoC built upon a parametric set of 

Initiator and Target network interfaces, routers, and links components. With these few building blocks, a 

designer can build any topology, from very regular to totally custom. At this stage, the only limiting factor 

is that STNoC supports AXI3, AXI4, and ACE-lite protocols at the network boundaries, with the ability to 

connect data busses of 32, 64, or 128 bits, in memory spaces of 32 or 40 bits. STNoC routers support up to 

5 input and 5 output ports and this is not a limiting factor, since this magic number is the best trade-off in 

terms of frequency, power and area in CMOS technologies such as the 28 FDSOI. 

STNoC is supported by a very powerful in-house designed EDA tool suite called INoC. To build up an 

STNoC interconnect, a designer must know: 

- the list of its initiators 

- the list of its targets 

- a memory map (for routing request transactions) 

- an ID map (for routing response transactions) 

- a topology 

- the different settings for the offered services  

Capturing all these settings into INoC, the tool generates: 

- the resulting RTL for the designed STNoC (VHDL) 

- documentations 

- entry points and configuration files for the verification environment 

4.5 STNoC architecture 
The STNoC architecture that will be utilized within ECOCALE will have AXI network interfaces, routers 

and links. The AXI network interfaces can be configured to support AXI3, AXI4 or ACE-lite protocols 

seamlessly. The topology will be optimized so as to offer higher performance, within the ECOSCALE 
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concept, than the existing standard AXI interconnect in the Xilinx Ultrascale+ devices/boards. Using 

STNoC it is possible to implement the communication among different chips with a unique interconnect 

that is split in different programming logic. 

 

Figure 19: Example STNoC architecture. 

 

4.6 STNoC memory map and services 
ECOSCALE utilizes the UNIMEM approach so all the initiators from the different interconnected boards 

see the same unified memory space. STNoC supports memory addresses ranging from 32 to 40 bits. 

Depending on the selected architecture, STNoC can support either a single memory range scheme 

replicated to all the FPGAs or a separate memory range for each connected reconfigurable block; the only 

limitation is that the overall memory range across all the connected reconfigurable blocks is up to48 bits. 

STNoC offers the following services: 

- Size conversion between initiator and target data bus sizes (end-2-end size conversion) or between 

any 2 STNoC building blocks thanks to a specialized adaptive link. 

- Frequency conversion, hence the possibility to have several clock domains at the on-chip level to 

serve initiators/targets running at different clock frequencies 

- support for 2 virtual networks, if required 

- routing, is automatically computed/generated by the information available in associated 

development tools that are provided by the SoC architecture 

- low silicon cost when no frequency and no size conversion is required 

- efficient QoS support based on the novel FBA (fair bandwidth allocation) algorithm 

- advanced services like routing and QoS re-programmability, near perfect clock gating, address 

interleaving (for platforms with 2 or more DDR channels) are also on-board. While these services 

are not foreseen as useful for ECOSCALE, we will evaluate later in the project if we embed them 

or not. 
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5 Hardware Platform  

Ultrascale is a Xilinx programmable architecture, first implemented at 20nm (Ultrascale) and now at 16nm 

(Ultrascale+). Both architectures span multiple nodes from planar through FinFET technologies and 

beyond, while also scaling from monolithic through 3D ICs. Initially , Ultrascale started at 20nm and 

offered an ASIC-class all programmable architecture to enable multi-hundred gigabit-per-second levels of 

system performance, scaling to terabits and teraflops. Things have now moved even further with the 16nm, 

UltraScale+ families that combine new memory, 3D-on-3D, and multi-processing SoC (MPSoC) 

technologies. 

According to the specifications of the UltraScale+ portfolio
8
, it is comprised of the Kintex UltraScale+ 

FPGA and Virtex UltraScale+ FPGA and 3D IC families, while the ZynqUltraScale+ family includes the 

all programmable MPSoCs. In addition, it is claimed that UltraScale+ devices provide 2ï5X greater 

system-level performance/watt over 28nm devices, far more systems integration and intelligence, and the 

highest level of security and safety. 

Some of the key Ultrascale+ features and advantages are: i) next generation routing, ASIC-like clocking, 

and enhanced logic blocks allowing for a 90% utilization, ii)  high-speed memory cascading to remove 

bottlenecks in DSP and packet processing, iii)  enhanced DSP slices incorporating 27x18-bit multipliers and 

dual adders, iv) step-function increase in 3D IC inter-die bandwidth for virtual monolithic design, 

v)bandwidth and latency reduction through multiple integrated ASIC-class blocks for 100G Ethernet, vi) 

static- and dynamic-power gating across a wide range of functional elements, vii) next-generation security 

with advanced approaches to AES bitstream decryption and authentication, key-obfuscation, and secure 

device programming, viii)DDR4 support of up to 2,666 Mb/s, and, ix)MPSoC technology, combining soft 

and hard engines for real time control, graphics and video processing, waveform and packet processing, 

and multi-level security, safety and reliability. 

With regard to the last, UltraScale+ MPSoCs are built around a quad-core ARM Cortex-A53 and dual-core 

ARMCortex-R5 processing system (PS). In addition to the 32-bit/64-bit application processing unit (APU) 

and the 32-bit real-time processing unit (RPU), the PS contains a dedicated ARM Mali-400 MP2 graphics 

processing unit (GPU).Furthermore, several peripherals modules can be connected to the processors. For 

instance, for interfacing to external memories for data or configuration storage, the PS includes a multi-

protocol dynamic memory controller, a DMA controller, a NAND controller, an SD/eMMC controller and 

a Quad SPI controller. In addition to interfacing to external memories, the processing units also contain 

their level 1 and/or level 2 caches and 256KB of on-chip memory. Naturally, high-bandwidth connectivity 

based on the ARM AMBA AXI4 protocol is offered that connects the processing units with the peripherals 

and provides interface between the PS and the programmable logic (PL). 

A Zynq UltraScale+ MPSoC consists of two major underlying blocks PS and PL in two isolated power 

domains. PS acts as one standalone MPSoC and is able to boot and operate without powering on the PL. 

The PS and PL can be coupled with multiple interfaces and other signals to integrate user-created hardware 

accelerators and other functions in the PL logic that are accessible to the processors. This is an ideal setup 

for the ECOSCALE plans since the Ultrascale+ high-level block diagram shows that it can facilitate a 

ñwindowò for the UNIMEM architecture through the high performance PL interface ports, Figure 20. In 

                                                           
8
http://www.xilinx.com/products/silicon-devices/soc/zynq-ultrascale-mpsoc.html 
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specific, as shown in the address mapping of Figure 21, the A53 processor of the Ultrascale+ FPGA has a 

448-GByteregion for accessing the external world ("PL = 448GB"). 

Furthermore, the Ultrascale+ processors can also access memory resources in the processing system. The 

PS I/O peripherals, including the static/flash memory interfaces share a multiplexed I/O (MIO) of up to 78 

MIO pins. Zynq UltraScale+ MPSoCs can also use the I/Os in the PL domain for many of the PS I/O 

peripherals. This is done through an extended multiplexed I/O interface (EMIO), Figure 20. 

After a system reset, the PMU system automatically initializes the system and CSU ROM executes the first 

stage boot loader from the selected external boot device. The process enables you to configure the MPSoC 

platform as needed, including the PS and the PL. Optionally, the JTAG interface can be enabled to provide 

access to the PS and the PL for test and debug purposes. Power to the PL can be optionally shut off to 

reduce power consumption. To further reduce power, the clocks and the specific power islands in the PS 

(for example, an APU power island) can be dynamically slowed down or gated off. 

 

Figure 20: Zynq Ultrascale+ MPSoC top-level block diagram 

The addresses used between the various processing system (PS) masters as well as between the system 

memory management unit (SMMU) are virtual addresses, as shown in Figure 21. The address bus (from 
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master to SMMU) is 48 bits for the 64-bit compliant PS masters. The 32-bit PS masters provide a32-bit 

address bus, which is zero-extended to 48 bits. The SMMU supports49-bit addresses. For PS-masters, the 

49
th
 address bit to the SMMU is zero, and the address bus from the programmable logic (PL) AXI 

interfaces into the PS is 49 bits. The 64-bit compliant PS masters provide 48-bit addresses and include the 

APU, PCIe, SATA, DisplayPort, FPD-DMA, USB, GEM, SD, NAND, QSPI, CSU-DMA, and LPD-DMA 

interconnects. 

 

Figure 21: Global system address map 

As already mentioned, the PS-PL interfaces are based on the AMBA AXI standard and they can support: 

i)high-performance AXI4 interfacing with FIFO support in the PS, ii)  variable data bus width, i.e. 32, 64, 

and 128, iii) independent read and write clocks, and, iv) path through the system memory management unit 

(SMMU) for address translation since the PL can work with virtual addresses. 

Additional features supported include: i)I/O coherency through the cache-coherent interconnect 

(CCI),ii)dedicated low-latency path between the low-power domain (LPD) and PL, iii) an accelerator 

coherency port (ACP) interface for coherency and direct allocation into the APUôs L2 cache and iv)an AXI 

coherency extensions (ACE) interface for full coherency. 

Finally, specific mention needs to be provided on the reasons behind considering Ultrascale+ as the suitable 

platform for ECOSCALEôs initial developmental needs. Based on the Compute Node architecture 

envisaged and presented in Figure 2, it becomes apparent that the likely candidates can be narrowed down 

to Xilinxôs Ultrascale+ platform and the lately announced Intel+FPGA platform by Intel, which recently 

acquired Altera. 

Investigating the hardware architecture of the two platforms, it can be realised that they offer a substrate 

onto which the proposed ECOSCALE architecture can fit and put into work with relative ease, i.e. they 

offer powerful processing systems as well as high-end FPGAs with two, however, distinct differences. 

First, in contrast to the Intel+FPGA platform, the Ultrascale+ platform is already available on the market 
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while, second, the former shall have a considerably greater power consumption footprint that shifts it into a 

region that is unacceptably large for ECOSCALEôs target power consumption demands. As a result, the 

ECOSCALE consortium has concluded onto the employment of Ultrascale+ as a development platform 

that balances high-end, high-performance behaviour with acceptable power consumption. 

5.1 ECOSCALE Prototypes 
The final ECOSCALE prototype will consist of multiple (about 16) interconnected prototype cards, which 

will form together an ECOSCALE PGAS. The prototype card, which will address all the ECOSCALEôs 

requirements, will be developed by the ExaNeSt project. It will support 4 Ultrascale+ FPGAs, 18 GBytes 

of memory per FPGA, an SSD and multiple high-speed links for internal and external communication. The 

ExaNeSt prototype card will become available in Q3 2016.  

Meanwhile, we plan to use other available commercial Ultrascale+ boards. While such development boards 

support a single FPGA and they donôt provide high-density solutions, they are good candidates for the 

initial development of the ECOSCALE architecture until the ExaNest main prototype card is available. 

The following Ultrascale+ boards will soon become available in the market and they are potential 

development platforms for ECOSCALE: 

¶ The Trenz board: Trenz Elecronic TE0808
9
 is an MPSoC module integrates a Xilinx Zynq 

UltraScale+, max. 8 GByte DDR4 SDRAM with 64-Bit width, max. 512 MByte Flash memory 

for configuration and operation, 20 Gigabit transceivers, and powerful switch-mode power 

supplies for all on-board voltages. The Trenz board is plugged into a Trenz board which provides 

external connectivity and power supply. The total cost of both boards is close to 3500ú and they 

will be available around about end of May. ECOSCALE will use this platform as soon as it 

becomes available. 

¶ The iVeia board: iVeia Atlas-III -Z8 SoM
10

 supports a Xilinx ZynqUltraScale+ and it is available 

in limited quantities. However, the carrier card is not available yet. The cost of the boards is 

around 5200 euros. 

¶ The Xilinx development board: The Xilinx ZCU102 development supports a Xilinx 

ZynqUltraScale+ FPGA and it is estimated to be available in a few months. 

5.2 Final Hardware Prototype 
The prototype card from the ExaNeSt project is estimated to cost around 11.5 kú (2 kú x 4 FPGAs + 1 kú x 

SSD + 0.5 kú x other components + 2 kú x PCB). TSI has allocated around 192 kú for the prototype cards 

and thus the final prototype can support around 16 of those cards. This prototype will support 64 Xilinx 

Ultrascale+ FPGAs featuring: 

¶ 64 64-bit quad-core Cortex A53  

¶ 64 x 600 = 38.4 K logic cells 

¶ 64 x 18 = 1.152 TBytes of DDR4 memory 

¶ 16 x 960 = 15.4 TBytes of SSD storage 

                                                           
9
 http://www.trenz-electronic.de/products/fpga-boards/trenz-electronic/te0808-zynq-ultrascale.html 

10
 http://www.iveia.com/atlas-iii -z8x 
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Each Ultrascale+ chip, including both CPUs and FPGA resources, corresponds to an ECOSCALE worker, 

while the 16 interconnected ExaNeSt prototype cards (including 16 x 4FPGAs=64 Workers in total) 

correspond to an ECOSCALE Compute Node. In this way the prototype will support a full Compute Node. 

The interconnection topology of the 16 prototype cards will be based on the results of the ExaNeSt project. 

We estimate that ExaNeSt will propose a 2D-torus topology, as shown in Figure 22, or a 3D-torus topology 

for direct communication between the prototype cards that form the Compute Node. Some links coming of 

the prototype cards will be connected to an external router that will be responsible for interconnecting the 

Compute Nodes together (for potential future extensions of the ECOSCALE prototype) or the daughter 

cards of a Compute Node depending on the interconnection topology specified by the ExaNeSt project. 

 

 

Figure 22: ExaNeSt prototype cards interconnected in 2D-torus topology to form a Compute Node. 
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6 Conclusions 
This deliverable has been responsible for laying out the specifications for the ECOSCALE hardware 

architecture as well as the ECOSCALE prototype. First, a short background review is offered that presents 

a high-level view of the ECOSCALE architecture. This helps in constructing an outline for the sub-

elements' specifications presented later. 

First, the UNIMEM architecture is addressed and specifically how it will be developed within the context 

of ECOSCALE. Its main purpose is to facilitate memory coherence islands, i.e. cache coherent, and in the 

case of ECOSCALE such a coherence island is a unique Worker Node (a collection of Workers is what 

makes up a Compute Node). 

Each Worker shall support a physical address mapping for accessing its local memory, its local peripherals 

and a "window" to the external world. The details for those actions are defined and it is decided that static 

mapping will be used for direct memory access that supports the entire global address space. Furthermore, 

one key ECOSCALE feature is the ability for remote cache-coherent accesses, hence, two different 

UNIMEM memory models are described, both of which will be supported by the ECOSCALE system. 

Subsequently, the UNILOGIC architecture is described that builds upon the pre-existing UNIMEM 

architecture in order to facilitate efficient distributed reconfigurable acceleration through parallel access of 

reconfigurable blocks by different Workers. 

Next, the details and workings of the Hardware Virtualization Block are defined in order to form a set of 

specifications for its operation. This virtualization block is responsible for executing OpenCL workgroups 

belonging to either the same or different (or both) kernel calls onto the available hardware workgroup set in 

the PL fabric. This is a laborious and complicated task that requires the clarification of several issues such 

as how to split an OpenCL kernel ND range into different workgroups and perform workgroup scheduling 

in relation to those available in the reconfigurable accelerators and all this under different OpenCL kernel 

call scenarios. 

Another significant element of the ECOSCALE architecture, which merits detailed investigation in order to 

extract a set of specifications to which it will have to adhere to, is the memory accesses routed by the local 

interconnects of the Workers and the global interconnect of the UNIMEM architecture. For this, three 

different address spaces are identified, i.e. the Virtual Address space, the Physical Address space and the 

Global Address Space. 

Naturally, the ECOSCALE system heavily relies upon interconnection protocols that must ensure that it 

operates within specifications. The interconnection protocols that will be used for efficient Worker Node 

communication are the AXI-based multi-level interconnect for PL and ARM (PS) communication. 

Furthermore, a Network-on-Chip model called STNoC will be utilised as a greater on-chip communication 

infrastructure for the final ECOCALE prototype consisting of AXI network interfaces, routers and links in 

order to provide a topology that supports the ECOSCALE Compute Node at a performance level that is 

greater than that achieved by the initial ECOSCALE platform, i.e. Ultrascale+. 

This brings us to the closing stages of the deliverable since here is where the specifications of the actual 

implementation platforms are defined. First, it is agreed that a Xilinx demonstration platform will be used, 

i.e. Ultrascale+, since it consists of a high-end Zynq FPGA as well as powerful PS-PL communication 

through high-performance AXI ports. The later stages of ECOSCALE, however, will lead to a final 
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hardware prototype that will be much more powerful. This is going to be based upon the prototype card of 

a different project, i.e. ExaNest, enriched by additional Ultrascale+ FPGAs. 
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