
D3.1 Specifications of HW Architecture and Prototype

Page 1 of 35

This document is Confidential, and was produced under the ECOSCALE project (EC contract 671632).

Project No: 671632

D3.1 Specifications of HW Architecture and Prototype

April 30,2016

Abstract:

This deliverable describes the architecture of the ECOSCALE platform focusing on the components of the

ECOSCALE Compute Node and their interfaces. The document explains in detail how the ECOSCALE Workers can

share reconfigurable resources and how OpenCL kernels can be executed on the platform. Finally, the document

describes the ECOSCALE prototype explaining that the ExaNeSt prototype card will be used.

Document Manager

Iakovos Mavroidis TSI

Document Id N°: ECOSCALE_D3.1 Version: 1.17 Date: 27/05/2016

Filename: ECOSCALE_D3.1_v1.17.docx

Confidentiality

This document contains proprietary and confidential material of certain ECOSCALE contractors, and may

not be reproduced, copied, or disclosed without appropriate permission. The commercial use of any

information contained in this document may require a license from the proprietor of that information

D3.1 Specifications of HW Architecture and Prototype

Page 2 of 35

This document is Confidential, and was produced under the ECOSCALE project (EC contract 671632).

The ECOSCALE Consortium consists of the following partners:

Participant no.
Participant organisation names short name Country

P1 (Coordinator) Telecommunication Systems Institute TSI Greece

P2 Queen's University Belfast QUB United

Kingdom

P3 STMicroelectronics STM France

P4 Acciona ACC Spain

P5 University of Manchester MAN United

Kingdom

P6 Politecnico di Torino POLITO Italy

P7 Chalmers University of Technology CHAL Sweden

P8 Synelixis SYN Greece

The information in this document is provided ñas isò and no guarantee or warranty is given that the

information is fit for any particular purpose. The user thereof uses the information at its sole risk and

liability.

Revision history

Version Author Notes Date

1.0 Iakovos Mavroidis Table of Contents 21/04/2016

1.1 Marcello Coppola Table of Contents update

1.2 Paul Harvey Questions and Comments 29/04/2016

1.3 Luciano Lavagno Global edit and section 3.3 02/05/2016

1.3 Vassilis Papaefstathiou Added section 3.1 04/05/2016

1.3 Joel Svensson Minor edits of typos 05/05/2016

1.4 Ignacio Munárriz,

Manuel Palomino

Questions and Comments 06/05/2016

1.5 Iakovos Mavroidis

Kostas Georgopoulos

Added summary, introduction, and section 4.1 07/05/2016

1.6 Joel Svensson Minor edits 09/05/2016

1.7 Paul Harvey Questions and Comments 09/05/2016

1.7 I. Sourdis Comments added in Section 3 10/05/2016

1.8 Iakovos Mavroidis Updates on Section 4.2 11/05/2016

1.8 Vassilis Papaefstathiou Edits on Section 3.1 11/05/2016

1.10 Edson Horta Internal Review
17/05/2016

1.11 Paul Harvey Internal Review 19/05/2016

1.12 Marcello Coppola Internal Review 20/05/2016

1.13 Marcello Coppola Removing the edits in Section 2 20/05/2016

1.14 Yannis Papaefstathiou Internal Review 23/05/2016

1.15 Marcello Coppola,

Michael Soulie

STNoC improvements according to the comments 24/05/2016

1.16 Kostas Georgopoulos Document updating, added figure caption on page

26, eliminated double spaces

25/05/2016

1.17 Vassilis Papaefstathiou Final edits 27/05/2016

D3.1 Specifications of HW Architecture and Prototype

Page 3 of 35

This document is Confidential, and was produced under the ECOSCALE project (EC contract 671632).

Contents

1. Introduction ...6

1.1 Glossary of Acronyms ..6

2. The ECOSCALE Architecture ...8

2.1 The UNIMEM Architecture in ECOSCALE .. 11

2.2 The UNILOGIC Architecture .. 14

3. Hardware Virtualization Support .. 16

3.1 HW Virtualization Block .. 17

3.2 User-space Direct Accesses ... 23

3.3 Reconfigurable Accelerator Block ... 25

4. Interconnection... 26

4.1 Interconnection protocols .. 26

4.2 AMBA .. 26

4.3 Network on chip (NOC) ... 26

4.4 STNoC overview .. 27

4.5 STNoC architecture ... 27

4.6 STNoC memory map and services .. 28

5 Hardware Platform ... 29

5.1 ECOSCALE Prototypes ... 32

5.2 Final Hardware Prototype ... 32

6 Conclusions ... 34

D3.1 Specifications of HW Architecture and Prototype

Page 4 of 35

This document is Confidential, and was produced under the ECOSCALE project (EC contract 671632).

List of Figures

Figure 1: High-radix partitioning for HPC applications ..8

Figure 2: The ECSOCALE Compute Node architecture ...9

Figure 3: Block diagram of ECOSCALE Worker .. 10

Figure 4: Accesses in the external ñwindowò of the local address space are translated to global memory

access. ... 12

Figure 5: Address mapping of Juno. The yellow region can be used as the external ñwindowò in order to

perform accessed in the global address space. .. 12

Figure 6: Partitioning of 256-GByte window into 16 regions, each one corresponding to a Worker in the

PGAS. ... 13

Figure 7: Worker 0 borrows a remote memory page from Worker 1. This page is cached and accessed only

by Worker 0. ... 13

Figure 8: Red page is shared between Worker 0 and Worker 1.All accesses pass through the cache of

Worker 1. .. 14

Figure 9: Worker 0 can directly send a command to the Reconfigurable Block of Worker 1 and the

Reconfigurable Block can directly access the memory of Worker 0. ... 15

Figure 10. The Virtualization block accepts several calls of the same kernel and schedules their work

groups to the reconfigurable accelerator, which in turn can execute multiple work groups in parallel. 17

Figure 11: A generic OpenCL implementation of SAXPY Level-1 BLAS Routine 18

Figure 12: Splitting of OpenCLNDRangeKernel into work-groups ... 18

Figure 13: Pseudo-code for the generation of work-groups from anNDRangeKernel call........................... 19

Figure 14: Scheduling Work-Groups onto the available HW functional units ... 20

Figure 15: Scheduling work-groups from multiple applications on the available HW functional units 21

Figure 16: Virtual, Physical and Global Address Spaces. .. 23

Figure 17: Address Translation Table used to translate VAôs of the arguments of a workgroup to PAôs. ... 24

Figure 18: The NoC paradigm .. 27

Figure 19: Example STNoC architecture. ... 28

Figure 20: Zynq Ultrascale+ MPSoC top-level block diagram .. 30

Figure 21: Global system address map ... 31

Figure 22: ExaNeSt prototype cards interconnected in 2D-torus topology to form a Compute Node. 33

D3.1 Specifications of HW Architecture and Prototype

Page 5 of 35

This document is Confidential, and was produced under the ECOSCALE project (EC contract 671632).

Executive Summary

This deliverable contains a detailed description of the information related to the specifications of the

hardware architecture of the ECOSCALE system as well as the ECOSCALE demonstration platform.

Specifically, this document separates into key sections and sub-sections the significant elements that are

essential to the two aforementioned objects. Hence, the specifications defined in this deliverable are as

follows.

First, the document presents the specifications related to the ECOSCALE hardware architecture and,

specifically, those that have to do with i) how the existing UNIMEM architecture is adapted to the

ECOSCALE context and ii) the proposed novel UNILOGIC architecture, which will be defined, designed

and implemented within the ECOSCALE project.

Secondly, the UNIMEM and UNILOGIC architectures can effectively be integrated within the

ECOSCALE system only if both support a set of specifications which cover the required virtualisation

support. Specifically, and within the context of the overall system, the virtualisation support specifications

are defined in relation to three key sub-elements, i.e. the HW Virtualisation block, the user-space direct

accesses and, finally, the reconfigurable accelerator block.

Following the virtualisation support specifications are the specifications of the ECOSCALE system

interconnections, which are also very important. In this context, the information is split into i) the

interconnection protocols of interest, ii) an overview of specifications for the AXI bus protocol that shall

also be extensively used in the system, and iii) the specifications of STNoC which is a novel architecture

for industrial on-chip communication network infrastructures.

Finally, this document presents the specifications of the actual hardware platform that is to host the

complete ECOSCALE system. This is comprised of i) an initial simpler development card and ii) the actual

hardware prototype; the initial specifications for both are presented in the final sections of this document.

The former refers to the hardware specifications of the core of the initial demonstration platforms whereas

the latter refers to the hardware specifications of the hardware system that will be implemented within the

ExaNest project and which will be used for the full demonstration of the ECOSCALE approach.

D3.1 Specifications of HW Architecture and Prototype

Page 6 of 35

This document is Confidential, and was produced under the ECOSCALE project (EC contract 671632).

1. Introduction
This document will address an important aspect of the ECOSCALE project, namely that of defining the

architectural specifications of the ECOSCALE system and its sub-elements. In other words, the

specifications of the high-level node hardware architecture including the CPUs, the reconfigurable devices,

the memory, and the I/O sub-systems will be derived. The specifications are mainly based on the exact

requirements of the two ECOSCALE real-world applications and they include those of the hardware

prototype that will be utilized in the evaluation of the end-platform when executing the real-world

applications.

It is a fundamental need to have a clearly defined set of specifications for the ECOSCALE system prior to

actually commencing with its development. Here the fundamental specifications related to key elements of

this system are presented in the following order and in their respective sections and sub-sections. First, the

overall ECOSCALE architecture is presented for context, and then the specifications related to the

UNIMEM and UNILOGIC architectures are presented. The UNIMEM architecture is a pre-existing

technology that has been adapted to the context of the ECOSCALE requirements, whereas UNILOGIC is a

novel technology to be developed within ECOSCALE. In order for both to materialise, a set of

specification are laid out in Section 2.

Subsequently, the ECOSCALE system will comprise of various sub-components and sub-elements such as

the hardware accelerator blocks. The integration of such components within the UNIMEM/UNILOGIC

architecture raise several issues regarding the memory addressing, therefore, an important elementof the

ECOSCALE system is that of sharing reconfigurable resources in hardware (hardware-assisted

virtualisation). Section 3 addresses the virtualisation support specifications specifically in relation to i) the

hardware virtualisation block, ii) user-space direct accesses and iii) the reconfigurable accelerator blocks.

Of equal importance is the set of specifications related to the ECOSCALE system interconnects and this is

addressed in Section 4. This refers to the interconnect protocols that will be used by the system such as the

AMBA AXI4 communication protocol and the STNoC programmable system-on-chip communication

network.

Finally, the ECOSCALE system is to be implemented in two different stages, first a demonstration

platform that may consist of off-the-shelf development boards and second ata hardware prototype

developed and manufactured within the context of the sister project ExaNest which will specifically

address the requirements/specifications of ECOSCALE; strictly hardware-related specifications related to

those two types of platforms are presented in Section 5.

1.1 Glossary of Acronyms

Acronym Definition

AMBA Advanced Microprocessor Bus Architecture

AXI Advanced eXtensible Interface

D Deliverable

EC European Commission

GA Global Address

GPU Graphics Processing Unit

HCP High Performance Computing

HLS High Level Synthesis

D3.1 Specifications of HW Architecture and Prototype

Page 7 of 35

This document is Confidential, and was produced under the ECOSCALE project (EC contract 671632).

MPI Message Passing Interface

PA Physical Address

WG Workgroup

WP Work-Package

D3.1 Specifications of HW Architecture and Prototype

Page 8 of 35

This document is Confidential, and was produced under the ECOSCALE project (EC contract 671632).

2. The ECOSCALE Architecture

This section offers an initial description of the ECOSCALE architecture, i.e. it offers a high-level

description of the system architecture. It therefore serves as a stepping stone for the material that follows in

later sections. These sections extensively analyse all the various sub-elements that make up the complete

system.

Overall, the ECOSCALE architecture will expand a memory technology known as UNIMEM (introduced

in the Euroserver project
1
 and described in more detail in Section 2.1) by providing the systems software

with the option to move tasks and processes closer to data instead of moving data around, significantly

reducing the data traffic and related energy consumption. In order to expand this approach within the

ECOSCALE project, a novel Partitioned Global Address Space (PGAS) memory system will be developed

which will be globally accessible from the general-purpose CPU cores as well as ECOSCALEôs

UNILOGIC architecture (described in more detail in Section 2.2) through regular loads and stores.

The UNILOGIC architecture, developed as part of this project, will operate within an environment of

virtualized hardware accelerators which will allow for the parallel execution of either different applications

and/or different parts of the same application. As a result, the ECOSCALE PGAS system shall extend the

UNIMEM memory architecture through a shared partitioned address space, while efficiently extending the

notion of global cache coherence so as to improve energy efficiency and scalability.

Figure 1: High-radix partitioning for HPC applications

Subsequently, the system architecture will be mainly comprised of CPUs, memory units and reconfigurable

blocks (i.e. FPGA-based accelerators as explained below) all implemented to operate in a highly parallel

manner. Driven by the characteristics and trends of future High Performance Computing (HPC)

applications and following the high-radix partitioning of an HPC application shown in Figure 1, the

proposed architecture partitions the hardware resources hierarchically, i.e. CPUs, reconfigurable logic,

memories, SSDs etc., into several interconnected sub-systems (corresponding to the PGAS partitions of the

application) which we call Compute Nodes; the Compute Nodes are further partitioned into several, what

we call, Worker nodes, each of which consists of a multi-core CPU tightly coupled with a memory and a

1
http://www.euroserver-project.eu/

D3.1 Specifications of HW Architecture and Prototype

Page 9 of 35

This document is Confidential, and was produced under the ECOSCALE project (EC contract 671632).

reconfigurable block; the capabilities and characteristics of each of those Nodes are analytically described

in the following paragraphs. The number of Workers per Compute Node (i.e. the size of a PGAS partition)

depends on the physical structure of the platform.

Thus, one Compute Node, Figure 2, creates an entire and independent PGAS system (or part of a system)

and each one includes several Worker nodes; this approach offers the following:

¶ UNIMEM : a shared partitioned global address space that allows Worker nodes to communicate

via regular loads and stores without global cache coherence and

¶ UNILOGIC : shared partitioned reconfigurable resources that share the UNIMEM space which

comprises only of software tasks.

Figure 2: The ECSOCALE Compute Node architecture

The benefit of the ECOSCALE architecture is that it overcomes limitations exhibited by other existing

architectures that either require a conventional global cache coherence mechanism, which simply cannot

scale, or support only DMA operations, which are not efficient for small data transfers such as messages to

synchronize remote threads or for configuring a remote peripheral. UNILOGIC supports both bulk DMA

transfers and direct load/store instructions between Workers.

The proposed HPC architecture, where i) each Compute Node is a PGAS sub-system providing a shared

address space and reconfigurable acceleration logic, and ii) MPI is used for communication between

Compute Nodes following the application topology, is shown in Figure 2. It consists of several Worker

nodes communicating through a multi-layer interconnection. The actual number of Workers inside a

Compute Node depends on the integration capabilities of future technologies. The ECOSCALE prototype

is expected to support 64 Workers (16 daughter cards x 4 FPGAs) per Compute Node as described in

Section 5.2. Each Worker is an independent computing unit that can execute, fork, and join tasks or threads

of an HPC application in-parallel with the other Workers. It includes a multi-core CPU, a reconfigurable

block and an off-chip DRAM memory, all communicating through a cache-coherent L0 interconnect.

Furthermore, the communication and synchronization between the Workers is performed through a multi-

layer non-coherent interconnection, which allows load and store commands, DMA operations, interrupts,

and synchronization between the Workers of a Compute Node (following the UNIMEM architecture

described in Section 2.1). The Compute Nodes are PGAS sub-systems that correspond to the application's

PGAS-based partitions shown in Figure 1.

D3.1 Specifications of HW Architecture and Prototype

Page 10 of 35

This document is Confidential, and was produced under the ECOSCALE project (EC contract 671632).

In order to match the application logical topology of Figure 1, the Compute Nodes are connected through a

multi-layer interconnection network and communicate with MPI. The ExaNeSt project
2
 focuses on this

multi-layer interconnection topology while ECOSCALE focuses on a single Compute Node. As we explain

in the next Sections there is close collaboration between these two projects.

Figure 3: Block diagram of ECOSCALE Worker

The communication overhead between a CPU and a hardware accelerator, i.e. the Reconfigurable Block

inside a Worker node, is one of the most crucial challenges. A few years ago, only explicit memory

transfers between the host memory and the accelerator's memory were supported, like in a GPU. Recent

technological advances allow the integration of the host CPU and hardware accelerators on the same chip,

and thus hardware accelerators can now directly access the host memory. Such a typical ARM-based

system is depicted on the left of Figure 3. However, there are still important limitations, described below,

that are tackled by the ECOSCALE system.

In the state-of-the-art architecture depicted in Figure 3, the ARM Cache Coherent Interconnect supports

two types of coherent ports in order to provide hardware coherency to the whole system: i) ACE ports,

which can be used by masters containing and sharing caches, such as a processor, and ii) ACE-lite ports,

which can be used by masters that have private caches/memory. ACE-lite ports allow the masters to access

the shared caches of other masters and they are traditionally used for hardware accelerators such as GPUs

and FPGAs, shown in the figure.

On the right side of Figure 3, the block diagram of an ECOSCALE Worker node is shown. The proposed

architecture will extend such a typical architecture as follows. Accelerator blocks act as what is known in

UNIMEM as a Unit of Compute, and hence they can interface directly with any other UNIMEM Unit of

Compute where each unit caches its local data coherently. Each accelerator can also cache its local data and

likewise provide coherent access from remote UNIMEM units.

Virtualization enables multiple applications or threads of an application to share a single multi-core CPU in

order to maximize the utilization of the CPU resources and hence reduce power consumption. Similarly,

2
http://www.exanest.eu/

D3.1 Specifications of HW Architecture and Prototype

Page 11 of 35

This document is Confidential, and was produced under the ECOSCALE project (EC contract 671632).

our architecture will support coarse-grain time-sharing of the reconfigurable resources through partial

runtime reconfiguration (implemented by the HW Context Switching block as described in D3.2).

Moreover, it will support fine-grain sharing of those FPGA resources, where a function implemented in

hardware can be ñcalledò by different tasks or threads of an HPC application in parallel, through the HW

Virtualization block shown in Figure 3 (see also Section 3). The Virtualization block and the HLS tool

provide a mechanism to execute multiple function calls in a fully pipelined fashion.

Sharing of the limited reconfigurable resources between Workers is very important. Thus, within a

Compute Node, any Worker can access any Reconfigurable block (even remote blocks that belong to other

Workers) through the multi-layer interconnect (L0 and L1 interconnects) shown in Figure 2. Moreover, the

L0 Interconnect in this system provides two external ports: one ACE-lite port and one standard

AXI (connection to L1 interconnect of Figure 3) that can be used by remote Reconfigurable blocks to make

coherent accesses. However, since this is not an ACE port (no snooping protocol is supported) the remote

Reconfigurable block should flush its data cache when execution is finished or disable its data cache (and

would not be as efficient as a local one).

2.1 The UNIMEM Architecture in ECOSCALE

The UNIMEM architecture
3
 aims to provide a scalable distributed system solution enabling direct remote

memory accesses and shared memory. Toward this end the architecture offers a) a global address space and

b) remote coherent accesses. Both are described below.

Global Address Space: The UNIMEM architecture can be deployed in a system consisting of several

"coherence islands", where a coherence island includes one or more processors, a cache coherent memory,

various peripherals and an external port for remote accesses. All accesses inside the coherence island are

cache coherent. In the ECOSCALE architecture, a "Worker" is one such coherence island and a collection

of Workers form an ECOSCALE Compute Node (i.e. an ECOSCALE PGAS partition), which supports the

UNIMEM architecture. Each Worker supports a physical address mapping for accessing its local memory,

its local peripherals and the external world (i.e. memories and peripherals of other Workers in the

ECOSCALE PGAS partition). This "window" to the external world provides direct memory and I/O

accesses (through standard load/store instructions) to other Workers and it is used to provide a global

address space in the Compute Node, as shown in Figure 4. The Worker physical interface to the remote

world can be anything (PCIe, AXI, Ethernet, etc.).

3
The UNIMEM architecture of the ECOSCALE prototype will be accessed through an API that will be defined and

provided as the project progresses in close collaboration with the EUROSERVER project.

D3.1 Specifications of HW Architecture and Prototype

Page 12 of 35

This document is Confidential, and was produced under the ECOSCALE project (EC contract 671632).

Figure 4: Accesses in the external ñwindowò of the local address space are translated to global

memory access.

As an example, Figure 5 shows the address mapping of the physical space inside a Juno board
4
. In this case

the Juno board is a Worker and the PCIe interface can be used for accessing the external world.

Figure 5: Address mapping of Juno. The yellow region can be used as the external ñwindowò in

order to perform accessed in the global address space.

The size of the window in the Juno board is limited to 256 GBytes and might be smaller than the global

address space (i.e. the total size of the memories that are in the system is bigger than 256 GBytes). In such

cases, a Worker cannot directly access the whole address space but only a portion of it (i.e. 256 GBytes in

our example). A translation mechanism in hardware will either provide a dynamic or static mapping

between the Worker physical address space and the global address space. This mechanism is included in

the "Global to PHY" and "PHY to Global" blocks shown in Figure 4.

If the window is large enough to support the entire global address space, then the Worker can directly

access any memory in the system without the need of any complicated translation mechanism in hardware.

This will be the case in ECOSCALE, thus static mapping will be used. Assuming that each Juno-based

4
 http://www.arm.com/products/tools/development-boards/versatile-express/juno-arm-development-platform.php

D3.1 Specifications of HW Architecture and Prototype

Page 13 of 35

This document is Confidential, and was produced under the ECOSCALE project (EC contract 671632).

Worker wants to expose 16 GBytes of memory to the global address space, then we can have up to 16

Workers (256 GBytes / 16 GBytes per Worker) in the Compute Node. In this way, the window of 256

GBytes can be statically partitioned into 16 memory domains, each one providing accesses to a Juno-based

Worker in the Compute Node.

Figure 6: Partitioning of 256-GByte window into 16 regions, each one corresponding to a Worker in

the PGAS.

Remote Cache-Coherent Accesses: Extending the aforementioned remote memory accesses, UNIMEM

offers cache coherency in a novel manner, which is much more scalable than the conventional solutions.

Within a UNIMEM architecture a page can be cached only by a single Worker and thus the architecture

does not allow the same physical page to move around the caches of the Workers. On one hand this

approach requires data locality in the system. On the other hand, this approach provides a simple and

scalable architecture since it does not require any global cache-coherence mechanism in hardware.

Following this approach, the UNIMEM architecture supports two memory models: remote page borrowing

and shared memory. In the remote page borrowing model when a Worker runs out of local memory it can

borrow memory pages from a remote Worker. Such a borrowed page can be accessed only by the borrower

Worker and not by any other Worker in the system. For example in Figure 7, Worker 0 has borrowed the

red page from the memory of Worker 1. In this memory model the red page is cached only by Worker 0,

which is also the only Worker that can access it.

Figure 7: Worker 0 borrows a remote memory page from Worker 1. This page is cached and

accessed only by Worker 0.

D3.1 Specifications of HW Architecture and Prototype

Page 14 of 35

This document is Confidential, and was produced under the ECOSCALE project (EC contract 671632).

In the shared memory model, Figure 8, the red page can be accessed by any Worker in the system. In this

case the page is cached only by Worker 1 (i.e. by the local Worker of the page) and any access coming

from other Workers (for example from Worker 0) should first check for a hit in the cache of Worker 1.

Figure 8: Red page is shared between Worker 0 and Worker 1.All accesses pass through the cache of

Worker 1.

2.2 The UNILOGIC Architecture

In ECOSCALE each Worker supports local reconfigurable resources for accelerating OpenCL workgroups

in hardware. ECOSCALE takes advantage of the global address space and remote coherent memory

accesses (shared memory model) provided by UNIMEM and extend them in certain ways so as to

implement the UNILOGIC architecture, which provides efficient distributed reconfigurable acceleration.

Overall, UNILOGIC supports the following cases:

¶ A Worker can ñuseò the reconfigurable accelerator blocks of remote Workers.

¶ A reconfigurable accelerator block can be accessed in parallel (i.e. shared) by many Workers. This

is further described in Section 3.

In Figure 9, Worker 0 can access the reconfigurable block of Worker 1 directly (through load/store

instructions, red arrow). In this way Worker 0 can send a command to the reconfigurable block of Worker 1

in order to trigger a new hardware execution of an OpenCL workgroup. The command includes the

addresses of the arguments of the OpenCL workgroup following a call-by-reference approach as explained

in Section 3.1. The memory space of the reconfigurable blocks is in the global address space

(ñECOSCALE memoryò region shown in Figure 6) thus allowing Worker 0 to directly access any

Reconfigurable Block in the Compute Node.

In a similar way, in order to execute the OpenCL workgroup in hardware, the Reconfigurable Block can

perform remote coherent accesses (green arrow) to the memory of Worker 0 since the memory of Worker 0

is in the global address space (ñJuno memoryò in Figure 6). In this way the Reconfigurable Block can

directly fetch the input arguments of the accelerated workgroup from Worker 0 as well as directly write the

output arguments to Worker 0.

D3.1 Specifications of HW Architecture and Prototype

Page 15 of 35

This document is Confidential, and was produced under the ECOSCALE project (EC contract 671632).

Figure 9: Worker 0 can directly send a command to the Reconfigurable Block of Worker 1 and the

Reconfigurable Block can directly access the memory of Worker 0.

D3.1 Specifications of HW Architecture and Prototype

Page 16 of 35

This document is Confidential, and was produced under the ECOSCALE project (EC contract 671632).

3. Hardware Virtualization Support

One unique and very important feature of our architecture is that it supports full and efficient virtualization

of the hardware resources. That is the reconfigurable accelerators can be shared by supporting multiple

calls from the same or different applications/processes. Thereby, the ECOSCALE architecture is expected

to improve resource utilization and as a consequence improve performance and/or energy efficiency. The

main novel functionalities/modules of the proposed Virtualization scheme are the following:

(1) Hardware virtualization block: this is a wrapper around the reconfigurable accelerator(s) that

manages multiple calls to the same (or to multiple) accelerators, scheduling their execution and

handling their memory accesses

(2) Direct access to a shared coherent memory space (based on UNIMEM) from:

a. the OpenCL kernels executed on reconfigurable device(s),

b. the OpenCL kernels executed on CPU(s) of the Worker (if the runtime decides that some

kernels should be executed in SW), and

c. the code executed on the host CPU,

in order to reduce the need for data copies and support a zero-copy approach.

(3) A module performing address translation in hardware, in order to allow multiple

applications/processes to share the virtualized reconfigurable accelerators.

The above points are explained in detail in the subsequent Sections 3.1 and 3.2.

To give an overview of the virtualization support in the ECOSCALE architecture, Figure 10 shows how we

can execute multiple calls of the same OpenCL kernel in parallel, without interference among their local

and private memory spaces. Each OpenCL kernel call in our system can be mapped to multiple workers,

and multiple calls can map to one worker. The basic unit of scheduling is a work-group (WG), which is an

atomic unit of execution. Since the content of local and private memories in OpenCL does not need to be

preserved across WG boundaries, this simplifies the management of preemption and sharing. The runtime

described in D3.3 is in charge of dispatching WG execution requests to individual virtualization blocks (per

worker) which in turn exploits the reconfigurable HW blocks, each implementing a WG of a kernel. We

consider that the runtime has already configured the FPGA logic to implement the required HW WG(s)

functionality in every worker it needs to dispatch work on, using the support described in D3.2. Moreover,

the runtime should allocate a memory-mapped request queue fromthe Virtualization Block found in each

associated worker; this could happen during the clCreateCommandQueue call.

Upon reception of a WG execution request in its incoming request queue, the Virtualization Block

programs the WG configuration registers and schedules the WG onto the set of available reconfigurable

accelerators. For each queued WG execution request the Virtualization Block needs to remember only if it

is scheduled, running or done. It can mix executions of the kernel work-groups originating from different

applications, or from different calls of the same kernel in an application, as well as provide Quality of

Service by controlling the rate at which the workgroups are executed. An FPGA may also include a number

of the same work-group implementations, which corresponds to the number of the outstanding work-groups

that can be scheduled in parallel by the Virtualization Block. Multiple workers in a node also can have

multiple FPGAs each with multiple WG implementations, in order to further increase performance and

flexibility.

D3.1 Specifications of HW Architecture and Prototype

Page 17 of 35

This document is Confidential, and was produced under the ECOSCALE project (EC contract 671632).

Figure 10. The Virtualization block accepts several calls of the same kernel and schedules their work

groups to the reconfigurable accelerator, which in turn can execute multiple work groups in parallel.

3.1 HW Virtualization Block
The hardware virtualization block provides the functionality required to share a reconfigurable accelerator

block across different contexts. The definition of context refers to the following cases:

¶ kernel calls from threads that belong to the same application/process

¶ kernel calls from threads that belong to different applications/processes

¶ independent kernel calls from the same application/process thread

In ECOSCALE, a reconfigurable accelerator block consists of a number of hardware functional units that

implement work-group(s)and are translated from the corresponding OpenCL kernels via high-level

synthesis (HLS) as described in D3.2. An OpenCLNDRangeKernel call (clEnqueueNDRangeKernel) from

an application submits a number of independent work-groups that can be executed concurrently on the

available functional units. One virtualization block per type of hardware work-group (reconfigurable

accelerator block) is required and this virtualization block is responsible for the kernel calls scheduled on

its associated worker (coherence island).

Work-Group Generation

To illustrate the generation of multiple independent work-groups from OpenCL code we use the example

code shown in Figure 11. The code presents a generic implementation of SAXPY,stands for Single-

precision Alpha XPlus Y(Y = aX + Y), and isa very popular Level-1 operation (vector) in the BLAS

package (Basic Linear Algebra Subprograms) which is used by many scientificand HPC applications. The

reqd_work_group_size(4,1,1)attribute in this example code instructs that theSAXPY kernel should

operatein work-groups of 4 work-items in the 1
st
dimension (say dimension X) of the 3-

DimensionalOpenCLiteration space (say 3 dimensions named X-Y-Z).

OpenCL
Kernel Call

OpenCL
Kernel Call

Create
Workgroups

Create
Workgroups

Workgroup

Workgroup

Workgroup

Workgroup

é

Workgroup

Workgroup

é

Workgroup

Workgroup

Scheduler

next

completed

Virtualization

Block

next

HWSW

Workgroup
HW Logic

Workgroup
HW Logic

Workgroup
HW Logic

é

Parallel Execution
in Hardware

Reconfigurable

Accelerator

Block

D3.1 Specifications of HW Architecture and Prototype

Page 18 of 35

This document is Confidential, and was produced under the ECOSCALE project (EC contract 671632).

__kernel void __attribute__ ((reqd_work_group_size(4, 1, 1)))
SAXPY (__global float * x, __global float * y, float a) {
constint i = get_global_id (0); // 0: Global 1 st Dimension (X) index

 y[i] += a * x[i];
}

Figure 11: A generic OpenCL implementation of SAXPY Level-1 BLAS Routine

Based on the size and dimensions of the input and output arrays an NDRangeKernelcall of the SAXPY

kernel will generate a number of independent work-groups each of local size [X:4, Y:1, Z:1](4 work-items)

that can execute concurrently. For illustration purposes letôs assume 3-dimensionalarrays of size [X:8, Y:4,

Z:6] that are allocated in contiguous memory space and give a global size of 8x4x6work-items, as shown in

Figure 12.AnNDRangeKernel call that covers the full global size will generate a number of work-groups

which is computed by dividing the global size of each dimension by the local size of each dimension:

ὢȡψȟὣȡτȟὤȡφ

ὢȡτȟὣȡρȟὤȡρ
ὢȡςȟὣȡτȟὤȡφ

Thus, the iteration space will have 48 work-groups (2x4x6), each with 4 work-items. Global indexing of

3D array elements, i.e. get_global_id(X|Y|Z) etc., requires the base pointers of the arrays, the 3D global

size, the 3Dlocal size of the work-group, and a 3D work-group ID as depicted in Figure 12 with the WGXYZ

notation. As computed above, the range of work-group IDs in the X dimension is [0.. 1] , in the Y

dimension is [0.. 3] , and in the Z dimension is [0.. 5] .

Figure 12: Splitting of OpenCLNDRangeKernel into work -groups

From the description above it becomes apparent that the only difference between OpenCL work-group

executions for a specific kernel is the 3D work-group ID. The base array addresses remain the same,the 3D

global size is fixed for a specific NDRangeKernel call, and local 3D size of the work-group is fixed (at the

time of the NDRangeKernel call or even at compile-time).Pseudo-code that generates the 3D work-group

IDs for an NDRangeKernelcall is shown in Figure 13.

D3.1 Specifications of HW Architecture and Prototype

Page 19 of 35

This document is Confidential, and was produced under the ECOSCALE project (EC contract 671632).

void ÃÌ%ÎÑÕÅÕÅ.$2ÁÎÇÅ+ÅÒÎÅÌƽÇÌÏÂÁÌƗ ËÅÒÎÅÌƗ ƛƾ ǅ
int x,y,z;

 for (z= 0; z<(global.sizes.z/kernel.sizes.z); z++)

 for (y= 0; y<(global.sizes.y/kernel.sizes.y); y++)

 for (x= 0; x<(global.sizes.x/kernel.sizes.x); x++)

dispatch(kernel, kernel.sizes, global. sizes, x, y, z);
}

Figure 13: Pseudo-code for the generation of work-groups from anNDRangeKernel call

Work-Group Scheduling

The virtualization block includes a hardware scheduler that dispatches the concurrent software work-groups

onto the available hardware functional units that implement work-groups in the reconfigurable accelerator

block. The hardware scheduler helps the runtime software to exploit the available hardware parallelism

(multiple functional units)in a per work-group granularity, i.e. each work-group runs to completion. The

scheduler exposes a ñRequest Queueò (FIFO)interface to allow dispatching multiple work-groups and/or

ranges of work-groups (as described later in this section). The request queue can be memory-mapped in the

virtual address space and may be maintained purely in the memory of the reconfigurable block (BRAMs),

orin the standard host memory, or in both those memory structures. The number of parallel functional units

in the reconfigurable accelerator block can be reconfigured at run-time and depends on the availability of

reconfigurable/FPGA resources at any point in time as described in D3.2.

Figure 14shows the functionality of the hardware scheduler when a single application dispatches a number

of work-groups for execution. In the case of a single application, the NDRangeKernel execution will

exploit the available hardware parallelism to execute faster and increase the overall throughput. Figure

14also exemplifies scheduling the work-groups of Figure 12on two SAXPY functional units (hardware

work-groups). The hardware scheduler dispatches the next work-group in the head of the request queue

(FIFO), onto the first-ready functional unit in a round-robin fashion. This scheduling policy allows work-

groups to complete out-of-order and improve utilization. In this example, work-group WG010 takes longer

than usual to execute, possibly because of longer memory access time, and WG110 completes earlier. The

hardware schedulerpermitsWG020 to start immediately on the available functional unit released by WG110.

Dispatching work-groups from a single application, requires the hardware scheduler to program the base

argument addresses/values, the3D global size, and the 3D local size only once for all functional units. For

subsequent work-group executions, the scheduler updates only the 3D work-group ID.

D3.1 Specifications of HW Architecture and Prototype

Page 20 of 35

This document is Confidential, and was produced under the ECOSCALE project (EC contract 671632).

Figure 14: Scheduling Work-Groups onto the available HW functional units

Figure 15 presents the functionality of the virtualized hardware scheduler when multiple applications

(1éM)dispatch work-groups for execution on the available hardware blocks (1éN). In the case of

multiple applications, work-groups from different applications/processes are interleaved on the available

hardware functional units(work-groups) to improve resource utilization. To support multiple applications,

the virtualization block schedules work-groups from multiple, per-application (or per-context) ñRequest

Queuesò.

Figure 15 also depicts scheduling the work-groups of Figure 12dispatched from multiple applications on

two SAXPY functional units (hardware work-groups).The virtualized scheduler serves the multiple (two)

request queues in a round-robin fashion and at a per work-group granularity. The next work-group to be

executed is dispatched on the first-ready functional unit in a round-robin fashion. This scheduling policy

also allows work-groups to complete out-of-order and improve utilization. The scheduler might implement

various alternative policies to ensure fairness, e.g. deficit round-robin based on execution cycles, or QoS

aware scheduling. In the example, the ñblackò WG100 takes longer than usual to execute, possibly because

of longer memory access time, and the ñgreenò WG100 completes earlier. The hardware scheduler permits

the ñblackò WG010 to start immediately on the available functional unit released by the ñgreenò WG100, so

the functional units might execute work-groups from different contexts at every work-group boundary.

Dispatching work-groups from multiple contexts, requires the hardware scheduler to program the base

argument addresses/values, the 3D global size, and the 3D local size every time a functional unit switches

to a different context. For subsequent work-group executions from the same context on the same functional

unit, the scheduler updates only the 3D work-group ID, e.g. in Figure 15 the ñgreenò WG100 after the

ñgreenò WG000 on the ñorangeò SAXPY.

SAXPY

SAXPY

D3.1 Specifications of HW Architecture and Prototype

Page 21 of 35

This document is Confidential, and was produced under the ECOSCALE project (EC contract 671632).

Figure 15: Scheduling work-groups from multiple applications on the available HW functional units

Command Interface

The hardware virtualization block request queues support the following commands:

¶ Execute Work-Group: This command requests the execution of a single work-group. It can

directly implement the clEnqueueTaskOpenCL construct. The runtime software should provide the

following fields to execute a work-group correctly:

o workgroup_id_x: The ID of the 1
st
 dimension (dimension X), 32-bits.

o workgroup_id_y: The ID of the 2
nd

dimension (dimension Y) if applicable, otherwise 0.

o workgroup_id_z: The ID of the 3
rd
dimension (dimension Z) if applicable, otherwise 0.

o global_size_x: The global number of work-items in dimension X, 32-bits.

o global_size_y: The global number of work-items in dimension Y if applicable, otherwise 1.

o global_size_z: The global number of work-items in dimension Zif applicable, otherwise 1.

o local_size_x: The local number of work-items in dimension X if the kernel

callsget_local_size(0) to dynamically adjust its operation and work with varying number of

X work-items or if the reqd_work_group_size(X,Y,Z) attribute is not present, otherwise

this field can be unspecified, 32-bits.

o local_size_y: The local number of work-items in dimension Y if the kernel

callsget_local_size(1) to dynamically adjust its operation and work with varying number of

Y work-items or if the reqd_work_group_size(X,Y,Z) attribute is not present, otherwise

this field can be unspecified, 32-bits.

o local_size_z: The local number of work-items in dimension Z if the kernel

callsget_local_size(2) to dynamically adjust its operation and work with varying number of

Z work-items or if the reqd_work_group_size(X,Y,Z) attribute is not present, otherwise

this field can be unspecified, 32-bits.

SAXPY

SAXPY

D3.1 Specifications of HW Architecture and Prototype

Page 22 of 35

This document is Confidential, and was produced under the ECOSCALE project (EC contract 671632).

o num_workgroups_x: The number of work-groups in the X dimension if the kernel calls

get_num_groups(0), otherwise this field can be unspecified, 32-bits.

o num_workgroups_y: The number of work-groups in the Y dimension if the kernel calls

get_num_groups(1), otherwise this field can be unspecified, 32-bits.

o num_workgroups_z: The number of work-groups in the Z dimension if the kernel calls

get_num_groups(2), otherwise this field can be unspecified, 32-bits.

o global_offset_x:The offset used to calculate the global ID of a work-item in the X

dimension, helps the implementation of clEnqueueNDRangeKernel, normally 0, 32-bits.

o global_offset_y:The offset used to calculate the global ID of a work-item in the Y

dimension, helps the implementation of clEnqueueNDRangeKernel, normally 0, 32-bits.

o global_offset_z:The offset used to calculate the global ID of a work-item in the

Zdimension, helps the implementation of clEnqueueNDRangeKernel, normally 0, 32-bits.

o Arguments:A number (N) of 64-bit values representing the arguments of kernel in the

order specified by the clSetKernelArgOpenCL command. If an argument is a pointer, this

is the virtual address.

o Status:The status of the current command is one the following: (a) SCHEDULED, (b)

RUNNING, (c) DONE. SCHEDULED is when the software issues the command.

RUNNING when the hardware scheduler has dispatched the command onto an accelerator.

DONE when the hardware has completed executing this work-group.

¶ Execute Work-Group Range: This command requests the execution of a range of work-groups.

This command can directly implement the clEnqueueNDRangeKernelOpenCL construct and

behaves like the pseudo code in Figure 13.The runtime software should provide the all the fields

required for a single work-group plus the following additional fields:

o workgroup_id_end_x: The ID of the last work-group in the range of the 1
st
 dimension

(dimension X), 32-bits. The ID of the first work-group in the range of the 1
st
 dimension is

specified in the field workgroup_id_x.

o workgroup_id_end_y: The ID of the last work-group in the range of the the 2
nd

dimension

(dimension Y) if applicable, otherwise the value workgroup_id_y, 32-bits. The ID of the

first work-group in the range of the 2
nd

 dimension is specified in the field workgroup_id_y.

o workgroup_id_end_z: The ID of the last work-group in the range of the the 3
rd
dimension

(dimension Z) if applicable, otherwise the value workgroup_id_z, 32-bits. The ID of the

first work-group in the range of the 3
rd
 dimension is specified in the field workgroup_id_z.

¶ Barrier: This command helps software to be notified, via the status flag, when all commands that

have been issued before the barrier have completed. Moreover, this command acts as a fence and

prevents reordering between previous and next commands.

o Status: The status of the barrier is one of the following: (a) SCHEDULED, (b) DONE.

SCHEDULED is when the software issues the command. DONE when the hardware has

reached the barrier.

¶ Translation Setup: This command can be used by the software to setup the translation table for a

given process/context as discussed in Section 3.2.

D3.1 Specifications of HW Architecture and Prototype

Page 23 of 35

This document is Confidential, and was produced under the ECOSCALE project (EC contract 671632).

3.2 User-space Direct Accesses
As described in Section 2.2, a Worker can directly access a remote Reconfigurable Block and the remote

Reconfigurable Block can directly access the memory of a Worker. These memory accesses are routed by

the local interconnects of the Workers and the global interconnect of the UNIMEM architecture. There are

three different address spaces involved in this scenario:

¶ The Virtual Address (VA) space, which is the set of ranges of virtual addresses that an Operating

System (OS) makes available to a user application. Thus, the user application can perform

load/store operations only in the VA space.

¶ The Physical Address (PA) space, which provides an address mapping for routing the memory

accesses inside a Worker. The source of such memory accesses can be the processor or the external

port of the Worker and the destination can be the local memory, the local memory-mapped I/O

devices, or the memory-mapped external port. The OS maps virtual pages to physical pages by

configuring the MMU of the processor. The MMU is responsible for translating virtual pages to

physical pages.

In a UNIMEM architecture the address mapping of the PA space includes a large region for direct

accesses to the external world (i.e. a large window to memories and I/O devices of remote

Workers). In ECOSCALE this window is large enough to support all the shared memories and

memory-mapped I/O devices of the PGAS, i.e. the Global Address space described below.

¶ The Global Address (GA) space, which provides an address mapping for routing the memory

accesses inside a PGAS. The source and the destination of such memory accesses can be the

external port of any Worker or any Reconfigurable Block in the PGAS. In ECOSCALE the shared

memories in the PGAS (i.e. the total GA space) is smaller than the window of the PA space, thus

the translation of an external PA page (i.e. a PA page belonging to the external window) to a GA

page or vice versa is trivial. The ñPHY to Globalò and ñGlobal to PHYò blocks simply remove or

append some bits from/to the address.

Figure 16: Virtual, Physical and Global Address Spaces.

The red arrows in Figure 16 show the transitions between the address spaces for a remote memory access

sent from an application running on Worker 0 to the Reconfigurable Block in Worker 1. The green arrows

show the transitions between the address spaces for a remote memory access sent from the Reconfigurable

Block in Worker 1 to Worker 0.

D3.1 Specifications of HW Architecture and Prototype

Page 24 of 35

This document is Confidential, and was produced under the ECOSCALE project (EC contract 671632).

The Reconfigurable Block performs remote accesses in order to read or write the arguments of the

accelerated workgroup. The PAôs of such accesses are generated using the information included in

ñtriggerò commands issued by the user application running on Worker 0 (see Section 3.1). However, the

application can only provide VAôs in the ñtriggerò command since it runs in the VA space. So the

Reconfigurable Block has to generate a PA from the corresponding VA. In order to perform this

translation, we will investigate several different approaches as listed below.

A first promising approach is to use an I/O MMU, which translates VAôs to PAôs in hardware. In

ECOSCALE we use an address translation table, which provides the translation of VAôs to PAôs. During

the initialization/configuration phase of the application, the application issues system calls in order to

configure the address translation table of the remote Reconfigurable Block it wants to use (red arrows in

Figure 17).Each entry of the translation table includes the mapping of a Worker ID (WID) and a VA page

to a PA page. Next the application can trigger the execution of a workgroup using the VAôs that are

included in the remote translation table without the intervention of the OS (green arrow). Finally, the

Reconfigurable Accelerator generates VAôs which are translated to PAôs by the translation block in order

to be routed to the correct destination (purple arrow).

Figure 17: Address Translation Table used to translate VAôs of the arguments of a workgroup to

PAôs.

The aforementioned mechanism can work only if the following conditions are met:

¶ The data accessed by the Accelerator block is pinned in the memory of Worker 0. Essentially the

purple arrow should not access a page that is not in the memory of Worker 0 and generate a page

fault.

¶ The Translation Table can always provide a physical address. This means that all the virtual pages

accessed by the Accelerator block should be included in the Translation Table. So if the data of the

arguments of an accelerated workgroup crosses several physical pages then the user has to send

multiple configuration commands. In case of a miss in the Translation Table the Reconfigurable

Block will signal an interrupt to Worker 0, stating that the translation table is not configured

properly.

Another approach that will be studied is to bypass the Translation Table (i.e. the requests initiated from the

Accelerator block will not go through the Translation Table). This is useful if the Accelerator block can

generate directly physical addresses, which is possible only if Worker 0 can provide physical addresses to

D3.1 Specifications of HW Architecture and Prototype

Page 25 of 35

This document is Confidential, and was produced under the ECOSCALE project (EC contract 671632).

the Accelerator block (green arrow). In this case the user application should either store the physical

addresses of the arguments of the accelerated OpenCL workgroup or it has to make a system call.

Finally we will investigate the use of the ARM SMMU (System Memory Management Unit)
5
 included in

the Processing System of the Ultrascale+ FPGA translating the VA of incoming memory accesses to PA.

While this seems to be the most efficient approach it might be hard to program and use an ARM SMMU

since several limitations have been noticed in the past (for example in the Juno board the SMMU supports a

single channel) while several functionalities are not explained in detail in the SMMU specifications (for

example allocating and assigning SMMU channels to different applications is not explained).

3.3 Reconfigurable Accelerator Block
Each reconfigurable acceleration block implements one work-group (WG) of an OpenCL kernel. Multiple

blocks implementing the same WG can be allocated to the same or to different FPGAs, in order to achieve

more parallelism. Multiple applications that call the same kernel can use the same reconfigurable

accelerator block through the virtualization block, in order to share resources. The reconfigurable

accelerator block receives the kernel arguments and the WG identifier from the virtualization block, and

accesses the system memory via the UNIMEM mechanism. For more details about how these blocks are

handled at design time, compilation time, and execution time the reader is referred to deliverable D3.2.

5
http://infocenter.arm.com/help/index.jsp?topic=/com.arm.doc.ihi0062b/index.html

D3.1 Specifications of HW Architecture and Prototype

Page 26 of 35

This document is Confidential, and was produced under the ECOSCALE project (EC contract 671632).

4. Interconnection
The Xilinx Vivado development tool provides full featured AXI interconnect interfaces. In the initial

project phase, these embedded interconnects will be used to validate the basics of the project architecture.

In the second phase the AXI interconnect will be substituted by the more efficient STNoC communication

architecture which will be deployed in the programming logic of the ECOSCALE boards. STNoC offers

better scalability, routing and quality of service, as well as parallelism when compared to the generic

embedded AXI interconnects that will be utilized in the first implementation of the ECOSCALE

architecture.

4.1 Interconnection protocols
The Xilinx Zynq FPGAs embed an AXI-based multilevel interconnect, offering support for ACE/ACE-lite

coherent protocols and classical AXI3/AXI4 protocols. ARM AXI interconnection protocols are

extensively used in industry and the academic world. Specifications for these protocols can be obtained for

free from ARM's website
6
 and are also described in the Xilinx documentations

7
, that can be obtained freely.

4.2 AMBA
As reported in WIKIPEDIA, the ARM Advanced Microcontroller Bus Architecture (AMBA) is an open-

standard, on-chip interconnect specification for the connection and management of functional blocks in

system-on-a-chip (SoC) designs. It facilitates development of multi-processor designs with large numbers

of controllers and peripherals. Since its inception, the scope of AMBA has, despite its name, gone far

beyond micro controller devices

AMBA was introduced by ARM in 1996. The first AMBA buses were Advanced System Bus (ASB) and

Advanced Peripheral Bus (APB). In its second version, AMBA 2, ARM added AMBA High-performance

Bus (AHB) that is a single clock-edge protocol. In 2003, ARM introduced the third generation, AMBA 3,

including AXI to reach even higher performance interconnect and the Advanced Trace Bus (ATB) as part

of the CoreSight on-chip debug and trace solution. In 2010 the AMBA 4 specifications were introduced

starting with AMBA 4 AXI, then in 2011 extending system wide coherency with AMBA 4 ACE. These

protocols are today the de facto standard for 32-bit and 64-bit embedded processors' Network on Chip

(NoC).

4.3 Network on chip (NOC)
A key element in the design of ECOSCALE is the global on-chip communication infrastructure, because its

throughput, latency and power consumption set the limit to the overall performance of the overall

computing platform. The traditional shared bus approach exhibits its limits as the number of integrated

processing cores (CPUs and Reconfigurable cores) increases. While gate delay scales with each new

technology node, global wire delay increases and can be kept constant only by inserting repeaters. For this

reason, shared bus communication standards are being substituted by multi-layer interconnects, now

commonly referred as NoC, when designing many-core systems. The NoC paradigm leverages the

networking and parallel computing domain experience into the SoC world. It is implemented by a layered

packet-switched micro-networks that include Physical, Network and Transport layers. STNoC is a high end

novel NoC developed by STMicroelectronics and already utilized in the most advanced

STMicroelectronicsô SoCs.

6
http://infocenter.arm.com/help/index.jsp?topic=/com.arm.doc.ihi0022d/index.html

7
http://www.xilinx.com/support/documentation/ip_documentation/axi_ref_guide/v13_4/ug761_axi_reference_guide.pdf

D3.1 Specifications of HW Architecture and Prototype

Page 27 of 35

This document is Confidential, and was produced under the ECOSCALE project (EC contract 671632).

Figure 18: The NoC paradigm

4.4 STNoC overview
At a glance, STNoC is a source-based routing wormhole switching NoC built upon a parametric set of

Initiator and Target network interfaces, routers, and links components. With these few building blocks, a

designer can build any topology, from very regular to totally custom. At this stage, the only limiting factor

is that STNoC supports AXI3, AXI4, and ACE-lite protocols at the network boundaries, with the ability to

connect data busses of 32, 64, or 128 bits, in memory spaces of 32 or 40 bits. STNoC routers support up to

5 input and 5 output ports and this is not a limiting factor, since this magic number is the best trade-off in

terms of frequency, power and area in CMOS technologies such as the 28 FDSOI.

STNoC is supported by a very powerful in-house designed EDA tool suite called INoC. To build up an

STNoC interconnect, a designer must know:

- the list of its initiators

- the list of its targets

- a memory map (for routing request transactions)

- an ID map (for routing response transactions)

- a topology

- the different settings for the offered services

Capturing all these settings into INoC, the tool generates:

- the resulting RTL for the designed STNoC (VHDL)

- documentations

- entry points and configuration files for the verification environment

4.5 STNoC architecture
The STNoC architecture that will be utilized within ECOCALE will have AXI network interfaces, routers

and links. The AXI network interfaces can be configured to support AXI3, AXI4 or ACE-lite protocols

seamlessly. The topology will be optimized so as to offer higher performance, within the ECOSCALE

D3.1 Specifications of HW Architecture and Prototype

Page 28 of 35

This document is Confidential, and was produced under the ECOSCALE project (EC contract 671632).

concept, than the existing standard AXI interconnect in the Xilinx Ultrascale+ devices/boards. Using

STNoC it is possible to implement the communication among different chips with a unique interconnect

that is split in different programming logic.

Figure 19: Example STNoC architecture.

4.6 STNoC memory map and services
ECOSCALE utilizes the UNIMEM approach so all the initiators from the different interconnected boards

see the same unified memory space. STNoC supports memory addresses ranging from 32 to 40 bits.

Depending on the selected architecture, STNoC can support either a single memory range scheme

replicated to all the FPGAs or a separate memory range for each connected reconfigurable block; the only

limitation is that the overall memory range across all the connected reconfigurable blocks is up to48 bits.

STNoC offers the following services:

- Size conversion between initiator and target data bus sizes (end-2-end size conversion) or between

any 2 STNoC building blocks thanks to a specialized adaptive link.

- Frequency conversion, hence the possibility to have several clock domains at the on-chip level to

serve initiators/targets running at different clock frequencies

- support for 2 virtual networks, if required

- routing, is automatically computed/generated by the information available in associated

development tools that are provided by the SoC architecture

- low silicon cost when no frequency and no size conversion is required

- efficient QoS support based on the novel FBA (fair bandwidth allocation) algorithm

- advanced services like routing and QoS re-programmability, near perfect clock gating, address

interleaving (for platforms with 2 or more DDR channels) are also on-board. While these services

are not foreseen as useful for ECOSCALE, we will evaluate later in the project if we embed them

or not.

D3.1 Specifications of HW Architecture and Prototype

Page 29 of 35

This document is Confidential, and was produced under the ECOSCALE project (EC contract 671632).

5 Hardware Platform

Ultrascale is a Xilinx programmable architecture, first implemented at 20nm (Ultrascale) and now at 16nm

(Ultrascale+). Both architectures span multiple nodes from planar through FinFET technologies and

beyond, while also scaling from monolithic through 3D ICs. Initially , Ultrascale started at 20nm and

offered an ASIC-class all programmable architecture to enable multi-hundred gigabit-per-second levels of

system performance, scaling to terabits and teraflops. Things have now moved even further with the 16nm,

UltraScale+ families that combine new memory, 3D-on-3D, and multi-processing SoC (MPSoC)

technologies.

According to the specifications of the UltraScale+ portfolio
8
, it is comprised of the Kintex UltraScale+

FPGA and Virtex UltraScale+ FPGA and 3D IC families, while the ZynqUltraScale+ family includes the

all programmable MPSoCs. In addition, it is claimed that UltraScale+ devices provide 2ï5X greater

system-level performance/watt over 28nm devices, far more systems integration and intelligence, and the

highest level of security and safety.

Some of the key Ultrascale+ features and advantages are: i) next generation routing, ASIC-like clocking,

and enhanced logic blocks allowing for a 90% utilization, ii) high-speed memory cascading to remove

bottlenecks in DSP and packet processing, iii) enhanced DSP slices incorporating 27x18-bit multipliers and

dual adders, iv) step-function increase in 3D IC inter-die bandwidth for virtual monolithic design,

v)bandwidth and latency reduction through multiple integrated ASIC-class blocks for 100G Ethernet, vi)

static- and dynamic-power gating across a wide range of functional elements, vii) next-generation security

with advanced approaches to AES bitstream decryption and authentication, key-obfuscation, and secure

device programming, viii)DDR4 support of up to 2,666 Mb/s, and, ix)MPSoC technology, combining soft

and hard engines for real time control, graphics and video processing, waveform and packet processing,

and multi-level security, safety and reliability.

With regard to the last, UltraScale+ MPSoCs are built around a quad-core ARM Cortex-A53 and dual-core

ARMCortex-R5 processing system (PS). In addition to the 32-bit/64-bit application processing unit (APU)

and the 32-bit real-time processing unit (RPU), the PS contains a dedicated ARM Mali-400 MP2 graphics

processing unit (GPU).Furthermore, several peripherals modules can be connected to the processors. For

instance, for interfacing to external memories for data or configuration storage, the PS includes a multi-

protocol dynamic memory controller, a DMA controller, a NAND controller, an SD/eMMC controller and

a Quad SPI controller. In addition to interfacing to external memories, the processing units also contain

their level 1 and/or level 2 caches and 256KB of on-chip memory. Naturally, high-bandwidth connectivity

based on the ARM AMBA AXI4 protocol is offered that connects the processing units with the peripherals

and provides interface between the PS and the programmable logic (PL).

A Zynq UltraScale+ MPSoC consists of two major underlying blocks PS and PL in two isolated power

domains. PS acts as one standalone MPSoC and is able to boot and operate without powering on the PL.

The PS and PL can be coupled with multiple interfaces and other signals to integrate user-created hardware

accelerators and other functions in the PL logic that are accessible to the processors. This is an ideal setup

for the ECOSCALE plans since the Ultrascale+ high-level block diagram shows that it can facilitate a

ñwindowò for the UNIMEM architecture through the high performance PL interface ports, Figure 20. In

8
http://www.xilinx.com/products/silicon-devices/soc/zynq-ultrascale-mpsoc.html

D3.1 Specifications of HW Architecture and Prototype

Page 30 of 35

This document is Confidential, and was produced under the ECOSCALE project (EC contract 671632).

specific, as shown in the address mapping of Figure 21, the A53 processor of the Ultrascale+ FPGA has a

448-GByteregion for accessing the external world ("PL = 448GB").

Furthermore, the Ultrascale+ processors can also access memory resources in the processing system. The

PS I/O peripherals, including the static/flash memory interfaces share a multiplexed I/O (MIO) of up to 78

MIO pins. Zynq UltraScale+ MPSoCs can also use the I/Os in the PL domain for many of the PS I/O

peripherals. This is done through an extended multiplexed I/O interface (EMIO), Figure 20.

After a system reset, the PMU system automatically initializes the system and CSU ROM executes the first

stage boot loader from the selected external boot device. The process enables you to configure the MPSoC

platform as needed, including the PS and the PL. Optionally, the JTAG interface can be enabled to provide

access to the PS and the PL for test and debug purposes. Power to the PL can be optionally shut off to

reduce power consumption. To further reduce power, the clocks and the specific power islands in the PS

(for example, an APU power island) can be dynamically slowed down or gated off.

Figure 20: Zynq Ultrascale+ MPSoC top-level block diagram

The addresses used between the various processing system (PS) masters as well as between the system

memory management unit (SMMU) are virtual addresses, as shown in Figure 21. The address bus (from

D3.1 Specifications of HW Architecture and Prototype

Page 31 of 35

This document is Confidential, and was produced under the ECOSCALE project (EC contract 671632).

master to SMMU) is 48 bits for the 64-bit compliant PS masters. The 32-bit PS masters provide a32-bit

address bus, which is zero-extended to 48 bits. The SMMU supports49-bit addresses. For PS-masters, the

49
th
 address bit to the SMMU is zero, and the address bus from the programmable logic (PL) AXI

interfaces into the PS is 49 bits. The 64-bit compliant PS masters provide 48-bit addresses and include the

APU, PCIe, SATA, DisplayPort, FPD-DMA, USB, GEM, SD, NAND, QSPI, CSU-DMA, and LPD-DMA

interconnects.

Figure 21: Global system address map

As already mentioned, the PS-PL interfaces are based on the AMBA AXI standard and they can support:

i)high-performance AXI4 interfacing with FIFO support in the PS, ii) variable data bus width, i.e. 32, 64,

and 128, iii) independent read and write clocks, and, iv) path through the system memory management unit

(SMMU) for address translation since the PL can work with virtual addresses.

Additional features supported include: i)I/O coherency through the cache-coherent interconnect

(CCI),ii)dedicated low-latency path between the low-power domain (LPD) and PL, iii) an accelerator

coherency port (ACP) interface for coherency and direct allocation into the APUôs L2 cache and iv)an AXI

coherency extensions (ACE) interface for full coherency.

Finally, specific mention needs to be provided on the reasons behind considering Ultrascale+ as the suitable

platform for ECOSCALEôs initial developmental needs. Based on the Compute Node architecture

envisaged and presented in Figure 2, it becomes apparent that the likely candidates can be narrowed down

to Xilinxôs Ultrascale+ platform and the lately announced Intel+FPGA platform by Intel, which recently

acquired Altera.

Investigating the hardware architecture of the two platforms, it can be realised that they offer a substrate

onto which the proposed ECOSCALE architecture can fit and put into work with relative ease, i.e. they

offer powerful processing systems as well as high-end FPGAs with two, however, distinct differences.

First, in contrast to the Intel+FPGA platform, the Ultrascale+ platform is already available on the market

D3.1 Specifications of HW Architecture and Prototype

Page 32 of 35

This document is Confidential, and was produced under the ECOSCALE project (EC contract 671632).

while, second, the former shall have a considerably greater power consumption footprint that shifts it into a

region that is unacceptably large for ECOSCALEôs target power consumption demands. As a result, the

ECOSCALE consortium has concluded onto the employment of Ultrascale+ as a development platform

that balances high-end, high-performance behaviour with acceptable power consumption.

5.1 ECOSCALE Prototypes
The final ECOSCALE prototype will consist of multiple (about 16) interconnected prototype cards, which

will form together an ECOSCALE PGAS. The prototype card, which will address all the ECOSCALEôs

requirements, will be developed by the ExaNeSt project. It will support 4 Ultrascale+ FPGAs, 18 GBytes

of memory per FPGA, an SSD and multiple high-speed links for internal and external communication. The

ExaNeSt prototype card will become available in Q3 2016.

Meanwhile, we plan to use other available commercial Ultrascale+ boards. While such development boards

support a single FPGA and they donôt provide high-density solutions, they are good candidates for the

initial development of the ECOSCALE architecture until the ExaNest main prototype card is available.

The following Ultrascale+ boards will soon become available in the market and they are potential

development platforms for ECOSCALE:

¶ The Trenz board: Trenz Elecronic TE0808
9
 is an MPSoC module integrates a Xilinx Zynq

UltraScale+, max. 8 GByte DDR4 SDRAM with 64-Bit width, max. 512 MByte Flash memory

for configuration and operation, 20 Gigabit transceivers, and powerful switch-mode power

supplies for all on-board voltages. The Trenz board is plugged into a Trenz board which provides

external connectivity and power supply. The total cost of both boards is close to 3500ú and they

will be available around about end of May. ECOSCALE will use this platform as soon as it

becomes available.

¶ The iVeia board: iVeia Atlas-III -Z8 SoM
10

 supports a Xilinx ZynqUltraScale+ and it is available

in limited quantities. However, the carrier card is not available yet. The cost of the boards is

around 5200 euros.

¶ The Xilinx development board: The Xilinx ZCU102 development supports a Xilinx

ZynqUltraScale+ FPGA and it is estimated to be available in a few months.

5.2 Final Hardware Prototype
The prototype card from the ExaNeSt project is estimated to cost around 11.5 kú (2 kú x 4 FPGAs + 1 kú x

SSD + 0.5 kú x other components + 2 kú x PCB). TSI has allocated around 192 kú for the prototype cards

and thus the final prototype can support around 16 of those cards. This prototype will support 64 Xilinx

Ultrascale+ FPGAs featuring:

¶ 64 64-bit quad-core Cortex A53

¶ 64 x 600 = 38.4 K logic cells

¶ 64 x 18 = 1.152 TBytes of DDR4 memory

¶ 16 x 960 = 15.4 TBytes of SSD storage

9
 http://www.trenz-electronic.de/products/fpga-boards/trenz-electronic/te0808-zynq-ultrascale.html

10
 http://www.iveia.com/atlas-iii -z8x

D3.1 Specifications of HW Architecture and Prototype

Page 33 of 35

This document is Confidential, and was produced under the ECOSCALE project (EC contract 671632).

Each Ultrascale+ chip, including both CPUs and FPGA resources, corresponds to an ECOSCALE worker,

while the 16 interconnected ExaNeSt prototype cards (including 16 x 4FPGAs=64 Workers in total)

correspond to an ECOSCALE Compute Node. In this way the prototype will support a full Compute Node.

The interconnection topology of the 16 prototype cards will be based on the results of the ExaNeSt project.

We estimate that ExaNeSt will propose a 2D-torus topology, as shown in Figure 22, or a 3D-torus topology

for direct communication between the prototype cards that form the Compute Node. Some links coming of

the prototype cards will be connected to an external router that will be responsible for interconnecting the

Compute Nodes together (for potential future extensions of the ECOSCALE prototype) or the daughter

cards of a Compute Node depending on the interconnection topology specified by the ExaNeSt project.

Figure 22: ExaNeSt prototype cards interconnected in 2D-torus topology to form a Compute Node.

D3.1 Specifications of HW Architecture and Prototype

Page 34 of 35

This document is Confidential, and was produced under the ECOSCALE project (EC contract 671632).

6 Conclusions
This deliverable has been responsible for laying out the specifications for the ECOSCALE hardware

architecture as well as the ECOSCALE prototype. First, a short background review is offered that presents

a high-level view of the ECOSCALE architecture. This helps in constructing an outline for the sub-

elements' specifications presented later.

First, the UNIMEM architecture is addressed and specifically how it will be developed within the context

of ECOSCALE. Its main purpose is to facilitate memory coherence islands, i.e. cache coherent, and in the

case of ECOSCALE such a coherence island is a unique Worker Node (a collection of Workers is what

makes up a Compute Node).

Each Worker shall support a physical address mapping for accessing its local memory, its local peripherals

and a "window" to the external world. The details for those actions are defined and it is decided that static

mapping will be used for direct memory access that supports the entire global address space. Furthermore,

one key ECOSCALE feature is the ability for remote cache-coherent accesses, hence, two different

UNIMEM memory models are described, both of which will be supported by the ECOSCALE system.

Subsequently, the UNILOGIC architecture is described that builds upon the pre-existing UNIMEM

architecture in order to facilitate efficient distributed reconfigurable acceleration through parallel access of

reconfigurable blocks by different Workers.

Next, the details and workings of the Hardware Virtualization Block are defined in order to form a set of

specifications for its operation. This virtualization block is responsible for executing OpenCL workgroups

belonging to either the same or different (or both) kernel calls onto the available hardware workgroup set in

the PL fabric. This is a laborious and complicated task that requires the clarification of several issues such

as how to split an OpenCL kernel ND range into different workgroups and perform workgroup scheduling

in relation to those available in the reconfigurable accelerators and all this under different OpenCL kernel

call scenarios.

Another significant element of the ECOSCALE architecture, which merits detailed investigation in order to

extract a set of specifications to which it will have to adhere to, is the memory accesses routed by the local

interconnects of the Workers and the global interconnect of the UNIMEM architecture. For this, three

different address spaces are identified, i.e. the Virtual Address space, the Physical Address space and the

Global Address Space.

Naturally, the ECOSCALE system heavily relies upon interconnection protocols that must ensure that it

operates within specifications. The interconnection protocols that will be used for efficient Worker Node

communication are the AXI-based multi-level interconnect for PL and ARM (PS) communication.

Furthermore, a Network-on-Chip model called STNoC will be utilised as a greater on-chip communication

infrastructure for the final ECOCALE prototype consisting of AXI network interfaces, routers and links in

order to provide a topology that supports the ECOSCALE Compute Node at a performance level that is

greater than that achieved by the initial ECOSCALE platform, i.e. Ultrascale+.

This brings us to the closing stages of the deliverable since here is where the specifications of the actual

implementation platforms are defined. First, it is agreed that a Xilinx demonstration platform will be used,

i.e. Ultrascale+, since it consists of a high-end Zynq FPGA as well as powerful PS-PL communication

through high-performance AXI ports. The later stages of ECOSCALE, however, will lead to a final

D3.1 Specifications of HW Architecture and Prototype

Page 35 of 35

This document is Confidential, and was produced under the ECOSCALE project (EC contract 671632).

hardware prototype that will be much more powerful. This is going to be based upon the prototype card of

a different project, i.e. ExaNest, enriched by additional Ultrascale+ FPGAs.

	OLE_LINK40
	OLE_LINK41
	OLE_LINK42
	OLE_LINK31
	OLE_LINK32

