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Executive Summary

This deliverable contains a detailed description of the information related to the specificdtites
hardware architecturef the ECOSCALE system as well as the ECOSCALE demonstration platform.
Specifically, this document separates into key sections andestiions the significant elements that are
essential to the two aforementioned objects. Hence, the specifications definesd delitrerable are as
follows.

First, the document presents the specifications related to the ECOSG#dd®arearchitecture and,

specifically, those thathave to do with i) how thexisting UNIMEM architecture is adapted to the
ECOSCALE context and ii) ghproposed noveUNILOGIC architecture, whichwill be defined, designed

and implemented withithe ECOSCALE project.

Secondly the UNIMEM and UNILOGIC architecturesan effectively be integratedwithin the
ECOSCALE system onlyf both support aset of specificationsvhich cover the requiredirtualisation
support. Specifically, andithin the context of theverall system, the virtualisation support specifications
are defined in relation to three key selements, i.e. the HW Virtualisation blqcthe usesspace direct
accesses and, finally, the reconfigurable accelerator block.

Following the virtualisation support specifications are the specifications of the ECOSCALE system
interconnections, which are alsery important In this context, the imfmation is split into i) the
interconnection protocols of interest, &h overviewof specifications for the AXI bus protocol that shall
also be extensively used in the system, and iii) the specificaifd@$NoC which is anovel architecture

for industial on-chip communication network infrastructures

Finally, this document presents the specifications of abieial hardware platform that is to host the
complete ECOSCALE system. This is comprised ahi)nitial simpler developmerdard and ii) the aogal
hardware prototypehe initial specifications for botlare presented in the final sections of this document.
The former refers tthe hardware specificationsf the core of thénitial demonstration platforms whereas
the latter refers tthe hardware specifications of therdware system that will be implemented within the
ExaNest project and which will hesedfor the full demonstration of the ECOSCALE approach
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1. Introduction
This document will address an important aspect of the ECOSCALEcprojamely that of defining the
architectural specifications of the ECOSCALE system and itsekrents. In other wordshe
specifications of the higlevel nodehardwarearchitecture including the CPUs, the reconfigurable devices,
the memoryand the /O subsystems will be derived. The specifications are mainly based on the exact
requirements of the two ECOSCALE rembrid applications and they include those of the hardware
prototype that will be utilized in the evaluation of the tatform when exadting the realorld
applications

It is a fundamental need to have a clearly defined set of specifications for the ECOSCALE system prior to
actually commencing with its development. Here the fundamental specifications related to key elements of
this system are presented in the following order and in their respective sections aedtsuis. First, the

overall ECOSCALE architecture is presented for contextd thenthe specifications related to the
UNIMEM and UNILOGIC architectures are presented.e THUNIMEM architecture is a prexisting
technology that has been adapted to the context of the ECOSCALE requitenhentas UNILOGIC i

novel technologyto be developed withinECOSCALE In order for both to materialise, a set of
specification are laidut in Section 2.

Subsequently, the ECOSCALE systaiill comprise ofvarious sukcomponents and stddements such as

the hardware accelerator blockshe integration of .ch componentsvithin the UNIMEM/UNILOGIC
architecture raise several issues regardimgmemory addressintherefore, an importarglemenof the
ECOSCALE system is that ofharing reconfigurable resources in hardware (hardassisted
virtualisation). Section 3 addresses the virtualisation support specifications specifically in r&daifidhe
hardware virtualisation block, ii) usepace direct accesses and iii) the reconfigurable accelerator blocks.
Of equalimportance is the set of specifications related to the ECOSCALE system interconnects and this is
addressed in Section 4. Thefers to the interconnect protocols that will be used by the system such as the
AMBA AXIl4 communication protocol and the STNoC programmable sysiamohip communication
network

Finally, the ECOSCALE system is to be implemented in two different stages,afidemonstration
platform that may consist of etheshelf development boards and seccetd hardware prototype
developed and manufactured within the contextthef sisterproject ExaNest which will specifically
address the requirements/specificatioh&8OSCALE; strictly hardwarerelated specifications related to
those two types of platforms are presented in Section 5.

1.1 Glossary of Acronyms

Acronym Definition
AMBA Advanced Microprocessor Bus Architecture
AXI Advanced eXtensible Interface
D Deliverable
EC European Commission
GA Global Address
GPU Graphics Processing Unit
HCP High Performance Computing
HLS High Level Synthesis
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Message Passing Interface

MPI

PA Physical Address
WG Workgroup

WP Work-Package
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2. The ECOSCALE Architecture

This section offers an initial description of the ECOSCALE architecture, i.e. it offers aekigh
description of the system architecture. It therefore serves as a stepping stone for the material that follows in
later sectionsThese sectionsxtensivéy analy® all the various sulelements that make up the complete

system.

Overall, the ECOSCALE architecture will exgha memory technology known as UNIMEtroduced

in the Euroserver projecand described in more detail in Section d§)providingthe systems software
with the option to move tasks and processes closer to data instead of moving datasagaifivdintly
redudng the data traffic and related energy consumptionorder to expand this approach within the

D3.1 Specifications of HW Architecture and Prototype

ECOSCALE projecta novelPartitioned Global Address Space (PGAS) memory system will be developed

which will be globally accessible from the genemir pos e

CPU cores as

UNILOGIC architecture (described in more detail in Section 2.2) through regular loads r&xsd sto

we l

The UNILOGIC architecture, developed as part of this project, will operate within an environment of
virtualized hardware accelerators which will allow for the parallel execution of either different applications
and/or different parts of the same apgtion As a result, the ECOSCALE PGAS system shall extend the

UNIMEM memory architecture through a shared partitioned address spaceeffibigntly extending the

notion ofglobal cache coherense as tamprove energy efficiency and scalability

LO Communication

{shared address space) )
_k"/ _
T1 ) T2 )
3 | v | 3

Logical shared mémory

1 1
‘ Memory M Memory ||| Mermary ‘
1 |

1 1
LO Partition (PGAS)

to higher levels

Logicpl shared mémory

Memory |

1
| Memoary M Memory
|
1 1
Lo'Partition (PGAS)

Figure 1: High-radix partitioning for HPC applications

Subsequently, the system architecture will be mainly comprised of CPUs, memory units and reconfigurable
blocks (i.e. FPGAbased accelerators as explained below) all implemdntegerate in a highly parallel

manner. Driven by the characteristics and trends of future High Performance Computing (HPC)

applications and following the higfadix partitioning of an HPC application shown kigure 1, the
proposed architecture partitions the hardware resources hierarchically, i.e. CPUs, reconfigurable logic,
memories, SSDs etc., into several interconnecteggstiems (correspondirig the PGAS partitions of the

application) which we call Compute Nodése Compute Nodes are further partitioned into several, what

we call, Worker nodes, each of which consists of a rsoltt CPU tightly coupled with a memory and a

*http://www.euroserveproject.eu/
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reconfigurable blockthe capabilities and characteristics of each of those Nodes are analytically described
in the following paragraphs. The number of Workers per Compute Node (i.e. the size of a PGAS partition)
depends on the physical structure of the platform.

Thus, one Capute NodeFigure 2, creats an entire and independent PGAgstem(or part of a system)
and each one includsesveral Worker nodethis approacloffers the following:

1 UNIMEM : a shared partitioned global address space that allows Worker nodes to communicate
via regular loads and stores without global cache coherence and

I UNILOGIC : shared partitioned reconfigurable resources that share the UNIMEdM sygdch
comprises only o$oftware tasks.

. Worker O Worker 1
’ — - T — — i
: \ Memory | Memory | | ™ L3 Interconnect
! —+— —+— [N
| ol — o« B I \
l e x| |9 = == 7] 1 N /
: S 8 E cru S 8 HEL cpu | | N
0 \
! 2 S =] 3 ! v | L2 Interconnect &
o o i o - i : ) Runtime System
I | 1
: I L1 Intertl:onnect 'ﬁartonnect .
| B - e TTTTTTTY gt B H ! p
I P pu s P § : 1 Ay
i c S| o =R ) | | \
o - Q - ' 1 en
i $a [ cPu SSIE ey | 1 | Compute Compute
5 o2
i —'T —'T i Node J Node
! Memory | Memory ! T
B s L) Sl -
Worker 3 Worker 4 -7

Figure 2: The ECSOCALE Compute Node architecture

The benefit of the ECOSCALE architecture is that it overcomes limitations exhibitethély existing
architectureghat either require aonventionalglobal cache coherea mechanism, which simply cannot

scale, or support only DMA operations, which are not efficient for small data transfers such as messages to
synchronize remote threads for configuiing a remote periphekaUNILOGIC supports both bulk DMA
transfers and direct load/store instructions between Workers.

The proposed HPC architecturgherei) each Compute Node is a PGAS sylstem providing a shared
address space and reconfigile acceleration logic, anid) MPI is used for communication between
Compute Nodes following the application topology, is showfrigure 2. It consists of several Worker
nodes communicating throlnga multilayer interconnection. The actual number of Workers inside a
Compute Node depends on the integration capabilities of future technolblgee& COSCALE prototype

is expected tasupport 64 Workers (16 daughter cards x 4 FPGAs) per Compute Nodsaibed in
Section5.2 Each Worker is an independent computing unit that can execute, fork, and join tasks or threads
of an HPC application Hparallel with the other Workers. It includesralti-core CPU, a reconfigurable
block and an ofthip DRAM memory all communicating through a cacbeherent LO interconnect
Furthermore,lte communication and synchronization between the Workers is performed through-a multi
layer non-coherentinterconnection, which allows load and store commands, DMA operatigesrupts,

and synchronization between the Workers of a Compute Node (following the UNIMEM architecture
described in Section 2.1The Compute Nodes are PGAS syistems that correspond to the application's
PGASDbased partitions shown Figurel.
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In order to natch the application logical topology Bfgure 1, the Compute Nodes acennected through a
multi-layer interconnection network and communicate with MPle ExaNeSt projetfocuses on this
multi-layer interconnection topology while ECOSCALE focusea@ingleCompute Node. As we explain
in the next 8ctions there is close collaboration between these two projects.

Typical ARM-based architecture ECOSCALE Worker
ARM ARM DRAM
processor| | SMMU processor SMMU Controller
ACE ACE lite ACE ‘ \ACE lite ‘ Mem L1
Coherent Int t
‘ LO Interconnect (Coherent) }Ler_mnnec
Interconnect i | ACE lite
Mem CElite L7 [ Global
DRAM TErEm i DCache |Address Space
Accel TN Single T ——L——77, o
Controller| cceler Commandd C’:;’Enee; Translation | Virtual
ator Address Space

HW Virtualization \' .
Reconfigurable

Accelerator
HW Context |—»
Switching

Reconfigurable block Reconfigurable block

Figure 3: Block diagram of ECOSCALE Worker

The communication overhead between a CPU and a hardware accelerator, i.e. the Reconfigurable Block
inside a Worker nodds one of the most crucial challenges. A few years, agdy explicit memory
transfers between the host memory and the accelerator's memory were supported, like in a GPU. Recent
technological advances allow the integration of the host CPU and hardwaeratoce on the same chip,

and thus hardware accelerators can ribsectly access the host memory. Such a typical ABAded

system is depicted on the left Bigure 3. However, there are still important limitations, described below,
thatare tackled by the ECOSCALE system

In the stateof-the-art architecture depicted Higure 3, the ARM Cache Coherent Interconnect supports
two types of coherent ports in order to provide hend coherencyo the whole system:i) ACE ports,
which can be used by masters contairang sharingcachessuch as a processor, angdACE-lite ports,
which can be used by masters thate privatecaches/memory ACE-lite portsallow the masters taccess
the shared cacheaf other masterand theyare traditionally used for hardware accelera such as GPUs
and FPGAs, shown in the figure.

On the right side oFigure 3, the block diagram odin ECOSCALBEWorker nodes shown The proposed
architecture will extend such a typical architecture as follows. Accelerator blocks act as what is known in
UNIMEM as a Uit of Compute, and hence they can interface directly with any other UNINJGM of
Computewhere each unit caches its local data coherently. Each accelerator can also cache its local data and
likewise provide coherent access froamote UNIMEM units.

Virtualization enablemultiple applications othreads of an application to share a singléti-coreCPU in
order to maximize the utilization of the CPU resouraed hence reduce power consumptiSmilarly,

http://www.exanest.eu/
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our architecture will support coargeain timesharing of the reconfigurable resources through partial
runtime reconfiguration(implemented by the HW Context Switching block as described in D3.2)
Moreover, it will support finggrain sharing of those FPGA resources, where a function implemented in
hardwar e can be tdsksarlthreads of atbHPC dpiplicatian ingaraillel, throughithe
Virtualization block shown irFigure 3 (see ao Section3). The Virtualization block and the HLS tool
provide a mechanism to execute multiple function calls in a fully pipelined fashion.

Sharirg of the limited reconfigurable resources between Workers is very important. Thus, within a
Compute Node, any Worker can access any Reconfigurable block (even remote blocks that belong to other
Workers) through the multayer interconnedfLO and L1 inteconnectsshown inFigure2. Moreover, the

LO Interconnect in thissystem provideswo external ports: one ACHe port and one standard

AXI (connection to L1 interconneot Figure3) that can be used by remote Reconfigurable blocks to make
coherent accesses. However, since this is nétG port (no snooping protocol is supported) the remote
Reconfigurable block shoulitiush its data cache when execution is finishedisable its data cache (and

would not ke as efficient as a local one).

2.1 The UNIMEM Architecturein ECOSCALE

The UNIMEM architecturdaims to provide a scalable distributed system solution enabling direct remote
memory accesses and shared memory. Toward this end the architecture offers a) a global address space an
b) remote coherent accesses. Both are described below.

Global Address SpaceThe UNIMEM architecture can be deployed in a system consisting of several
"coherereislands", where a coheremisland includes one or more processors, a cache coherent memory,
various peripherals and an external port for remote accesieaccesses gidethe cohereceisland are

cache coherent. In the ECOSCALE architecture, a "Worker" is one such amhistand and a collection

of Workers form an ECOSCALEompute Node (i.e. an ECOSCAIHGAS partitiof), which supports the
UNIMEM architecture. Each Worker supports a physical address mapping for accessing its local memory,
its local peripherals and the external world (i.e. memories and peripherals of other Workers in the
ECOSCALE PGAS partition). This "window" to the external world ides direct memory and 1/O
accesses (through standard load/store instructions) to other Workers and it is used to provide a global
address space in tf@ompute Nodeas shown irFigure 4. The Worker physical interface to the remote
world can be anything (PCI&XI, Ethernet, etc.).

*The UNIMEM architecture othe ECOSCALE prototype will be accessed through an tA& will be defined and
provided as the project progresseslosecollaboration with th&aUROSERVERproject.
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Worker Worker
Processor | Processor DMA Processor | Processor DMA
Local Cache Coherent Interconnect Local Cache Coherent Interconnect
window window
i . r'y i
DMC DMC
[ [
v v

Global PHY to Global PHY to
to PHY || Global toPHY || Global DRAM

‘ Global Interconnect ‘

Figure4. Accesses in the external Awi ndowd of the
memory access.

As anexample Figure5 showsthe address mapping of the physical space inside a Jund.Hoatds case
the Juno board is a Worker and the PCle interface can be used for accessing the external world.

0x100_0000_0000

Reserved =512GB
0x80_0000_0000
PCle expansion 256GB
0x40_0000_0000
Reserved 216GB
0x10_0000_0000 DRAM 6GB
0x08_8000_0000 e 3068
0x01_0000_0000 DR 268

ADP peripherals 512MB

0x00_6000_0000 PCle expansion 512MB

0x00_4000_0000

0x00_8000_0000

Reserved 272MB
0x00_2F00_0000
0x00_1F00_0000
0x00_0800_0000

ADP peripherals 256MB
SMC interface 368MB

0x00_0000_0000 Boot 128M1B
Application processor
Address space memory map
Figure5: Address mapping of Juno. The yellow regior

order to perform accessed in the global address space.

The size of the window in the Juno board is limited to 256 GBytes and might be smaller than the global
address space (i.e. the total size of the memories that tresystemis bigger than 256 GBytes). such

cases, a Worker cannot directly accessathele address space but only a portion of it (i.e. 256 GBytes in
our example). A translation mechanism in hardware will either provide a dynamic or static mapping
between the Worker physical address space and the global address space. This mechahigiedisninc

the "Global to PHY" and "PHY to Global" blocks shoin Figure4.

If the window is large enough to support the entire global address, shanethe Worker can directly
access any memory in the system without the need of any complicated translation mechanism in hardware.
This will be the case in ECOSCALE, thus static mapping will be used. Assuming that eadbasedo

* http://www.arm.com/products/tools/developméniards/versatilexpress/junarmdevelopmenplatform.php
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Worker wants to expose61GBytes of memory to the global address spHwn we can have up to 16
Workers (256 GBytes / 16 GBytes per Worker) in @@mpute Nodeln this way, the window of 256
GBytes can be statically partitioned into 16 memory domains, each one providinggadoesdundased
Worker in theCompute Node

mailbox, engines, 1GB
g atomic

Coh. Island 15 H6GB

Coh. Island 14 16GB/ ECOSCALE memory |2 GB

Acceleratormemory  »gp

Coh.lIsland 3 16GB

Coh.Island 2 Junomemory 8GB

16GE .
Coh. Island 1 16GB

Coh. Island 0 16GB

0x40_0000_000

Figure 6: Partitioning of 256-GByte window into 16 regions, each one corresponding to a Worker in
the PGAS.

Remote Caché&Coherent Accesses€Extending the aforementioned remote memory accesses, UNIMEM
offers cachecoherencyin a novel manner, which is much more scalable than the conventional solutions
Within a UNIMEM architecture a page can be cached only by a single Worker and thus thectamehi

does not allow the same physical page to move around the caches of the Workers. On one hand this
approach requires data locality in the system. On the other, tid@adapproach provides a simple and
scalable architecture since it does not requisegdobal cache&oherese mechanism in hardware.

Following ths approach, the UNIMEM architecture supports two memory models: remote page borrowing
and shared memory. In the remote page borrowing model when a Worker runs out of local memory it can
borrow memory pages from a remote Worker. Such a borrowed page can be accessed only by the borrower
Worker and not by any other Worker in the system. For exampteggure 7, Worker 0 has borrowed the

red page from the memory of Worker 1. In this memory model the red page is cached only by Worker 0,
which is also the only Worker that can access it.

Worker(Q Worker 1

Processor | Processor Processor || Processor
DMA DMA

| ——

Local Cache Coherent Interconneci Local Cache Coherent Interconnect

I

‘DVIC‘
[

v v v
Global ‘ PHY to Global ‘ PHY to -
DRAM || toPHY || Global toPHY || Global M
t ] [
| Crommmeromer |

Figure 7: Worker 0 borrows a remote memory page from Worker 1. This page is cached and
accessed only by Worker 0.

DMC
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In the shared memory modéligure 8, the red page can be accessed by\aforker in the system. In this
case the page is cached only by Worker 1 (i.e. by the local Worker of the page) and any access coming
from other Workers (for example from Worker 0) should first check for a hit in the cache of Worker 1.

WorkerQ Worker 1
Processor | | Processor OMA Processor || Processor DMA
I I l Remotely IMiss/Replac} l
cacheable
Local Cache Coherent Interconneci Logal|Cache Coherent Interconnect

DMC

EVIC
v ¥
Global PHY to Global PHY to M
toPHY || Global to PHY| | Global M

‘ Global Interconnect ‘

Figure 8: Red page is shared between Worker 0 and Worker 1.All accesses pass through the cache of
Worker 1.

2.2 The UNILOGIC Architecture

In ECOSCALE each Worker supports local reconfigurable resources for accelerating OpenCL workgroups
in hardware. ECOSCALE takes advantage of the global address space and remote coherent memory
accesses (shared memory model) provided by UNIM&M extend them in certain ways so as to
implementthe UNILOGIC architecturewhich providesfficient distributedreconfigurable acceleration.

Overall, UNILOGIC supports the following cases:

T A Worker can fiused the reconfigurable acceler
1 A reconfigurable accelerator block can be accessed in parallel (i.e. shared) by many Workers. This
is further described in Sectidh

In Figure 9, Worker 0 can acceshe reconfigurable block of Worker directly (through load/store
instructions red arrow. In this way Worker 0 can send a command tadieenfigurableblock of Worker 1

in order to trigger a new hardware execution of an OpenCL workgrbog.command includes the
addresses of the arguments of the OpenCL workgroupnioiipa caltby-reference approach as explained
in Section 3.1L The memory space of thesconfigurableblocks is in the global address space
(AECOSCALE me mor yin Figure @) ithos allosvihgoWonker 0 to directly access any
Reconfigurable Block in th€Eompute Node

In a similar way, in order to execute the OpenCL workgroup in hardware, the Reconfigurable Block can
perform remote coherent accesses (green arrow) to the memory of Worker 0 since the memory of Worker 0
is in the gl obal a d d r Figsres6). b phas evay thé Recanfigorablm 8lotk cag 0 i
directly fetch the input arguments of the accelerated workgroup from Worker 0 as well as direetthavrit
output arguments to Worker 0.
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Worker 0 Worker 1
Processor Processor DMA Processor Processor DMA
Lecal Cache Coherent |nterconnec] LgeatCactre-Cotrerentintercomest
l T Y A T L
Reconf. OMC DMC Reconf.
Block Block
r Y Y hJ
Glpbal PHY to Global PHY to
DRAM || tolpHY || Global toPHY || Glopal || DRAM
Glotramerconmect

Figure 9: Worker 0 can directly send a command to the Reconfigurable Block of Worker 1 and the
Reconfigurable Block can directly access the memory of Worker O.

Page 150f 35

This document is Confidential, and was produced under the ECOSCALE project (EC contract 671632).



D3.1 Specifications of HW Architecture and Prototype

3. Hardware Virtualization Support
One unique and very important feature of atehitecturds that itsupportsull and efficientvirtualization
of the hardware resources. That is the reconfigurable accelerators can be tshatggborting multiple
calls from the same or different applions/processes. Thereby, the ECOSCALE architecture is expected
to improve resource utilization and as a consequence improve perforanraiioe energy efficiencylhe
main novel functionalities/modules of the proposeédudlizationscheme are the followg:

(1) Hardware virtualization block: this is a wrapper around the reconfigurable accelerator(s) that
manages multiple calls to the same (or to multiple) accelerators, scheduling their execution and
handling their memory accesses

(2) Direct access to a sharedherent memory space (based on UNIMEM) from:

a. theOpenCL kernedexecuted on reconfigurabtievices),
b. the OpenCL kernad executedon CPUs) of the Worker(if the runtime decides that some
kernels should be executed in S\&id

c. thecode executed on thwstCPU,
in order to reduce the need for data copiedsupport ezerccopyapproach

(3) A module performing address translation in hardware, in order to allow multiple
applications/processes to share the virtualized reconfigurable accelerators.

The abovepoints are explained in detail in the subseq$attions 3.1 and 3.2.

To give an overview of the virtualization support in the ECOSCALE architedtigere 10 shows how we
can execute multiple calls of the sa@penCLkernel in parallel, without interference among their local
and private memory spaces. Each OpenCL kernel call in our system can be mapped to multiple workers,
and multiple calls can map one worker. The basic urat schedulings a work-group (WG), which is an
atomic unit of execution. Sindbe content ofocal and private memiasin OpenCLdoes not need to be
preservedxcross WG boundaries, this simplifies the management of presmmgtid sharing. The runtime
described in D3.3 is in charge of dispatching WG execution requests to indiiitlualization blocks (per
worker) which in turn exploits the reconfigurabt®V blocks,each implementing a WG of a kernéle
consider that theuntime has already configured the FPGA logic to implementefairedHW WG(s)
functionalityin every workeiit needso dispatch worlon, using the supporescribed in D3.2Moreover,
the runtime shouldallocate amemorymappedrequest queuéomthe Virtualization Blockfoundin each
associateavorker, this ould happen during the clCreateCommandQueue call

Upon reception of a WG execution request in its incomieguestqueue,the Virtualization Bock
programs the WG configuration registers and salesxthe WG onto theset of availableeconfigurable
acceleratorsFor each queued WG exeiout request the Virtualizationl8ck needs to remember only if it

is scheduled, running or done. It can mix executions of the kewor&lgroupsoriginating fromdifferent
applications, or from different calls of the same kernel in an application, as well as provide Quality of
Service by contrdihg the rate at which the wagkoups are executedn FPGA may also iclude a number

of the same woHgroup implementatias, which corresponds to thember of the outstanding wegtoups

that can be scheduled parallel by the Virtualization Bck. Multiple workers in a node also can have
multiple FPGAs each with multiple WG implementations, in order to further increas®pance and
flexibility.
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Figure 10. The Virtualization block accepts several calls of the same kernel and schedules their work
groups to the reconfigurable accelerator, which in turn can execute multiple work groups iparallel.

3.1 HW Virtualization Block

The hardware virtualization block provides the functionality required to share a reconfigurable accelerator
block across different contexts. The definition of context refers to the following cases:

1 kernel calls from treads that belong to the same application/process
1 kernel calls from threads that belong to different applications/processes
9 independent kernel calls from the same application/process thread

In ECOSCALE, a reconfigurable accelerabbock consists of aaumber of hardware functional units that
implement workgroup(s)and are translated from the corresponding OpenCL kernels vialevigh
synthesis (HLSas described in D3.2An OpenCLNDRangeKernel call (clEnqueueNDRangeKernel) from
an application submits a number of independent wgookips that can be executed concurreotiythe
available functional unitsOne virtualization block per type of hardware wagmroup feconfiguable
acceleratoblockK) is required and this virtualization bloékresponsible for the kernel calls scheduled on
its associatedorker (coherence island).

Work-Group Generation

To illustrate the generation of multiple independent wagndups from OpenClcode we use the example

code shown inFigure 11. The code presents a generic implementation of SAXPY,standSirfgle-
precisionAlpha XPlus Y(Y = aX + Y), and isa very popular Lev&l operation (vector) in the BLAS
package (Basic Linear Algebra Subprograms) which is used by many scientificand HPC applications. The
reqd_work_group_size(4,1,1)attribute in this example code instructs that theSAXPY kbmed
operatein workgroups of 4 worktems in the Idimension (say dimension X) of the- 3
DimensionalOpenCLiteration space (say 3 dimensions namé&X
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__kernel void __ attribute__ ((reqd_work_group_size( 4, 1, 1))
SAXPY(__global float *x,__ global float *y, float a){
constint i=get_global_id ( 0); // 0: Global 1 ' Dimension (X) index

ylil += a* x[if;

Figure 11: A generic OpenCL implementation of SAXPY Levell BLAS Routine

Based on the size and dimensions of the input and output arrays an NDRangeKernelcall of the SAXPY
kernel will generate a number of independent wgndupseachof local size [X:4, Y:1, Z:1](4 workitems)

that can execute concurrently. For illustration pugpe s | e t -dimenshoratamuayseof sike [X:8, Y:4,

Z:6] that are allocated in contiguous memory space and give a global size of 8x4i@wskas shown in

Figure 12 AnNDRangeKernel call that covers the full global size will genesatember of worigroups

which is computed by dividing the global size of each dimension by the local size of each dimension

Thus, the iteration space will have 48 waploups(2x4x6), eachwith 4 work-items. Global indexing of

3D array elements, i.e. get_global_id(X|Y|Z) etc., requires the base pointers of the arrays, the 3D global
size, the 3Dlocal size oféhworkgroup, and a 3D worgroup ID as depicted iRigure12 with the WGz
notation. As computed above, the range of wgroup IDs in the X dimensiois [0.. 1], in the Y
dimension i40.. 3], and in the Z dimension |8.. 5] .

iy i

an
L e (WG1oo

WG
Global size: X=8, Y=4, Z=6
Work-Group size: X=4, Y=1, Z=1

Figure 12: Splitting of OpenCLNDRangeKernel into work -groups

From the description above it becomes apparent that the only difference b&@peeGL work-group
executiondor a specific kernel is the 3D wodeoup ID. The base array addresses remain the same,the 3D
global size is fixed for a specific NDRangeKernel call, and local 3D size of thegroup is fixed (at the

time of the NDRangeKernel cadr even at compiléime).Pseudaode that generates the 3D waloup

IDs for anNDRangeKernelcall is shown Figure13.
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void Al %1 NOAOGA. $2AT CA+AOT Al sciTAAI+ EAOT AT+ A
int xy,z;

for (z= 0; z<(global.sizes.z/kernel.sizes.z); z++)
for (y= 0; y<(global.sizes.y/kernel.sizes.y); y++)
for (x= 0; x<(global.sizes.x/kernel.sizes.x); x++)
dispatch(kernel, kernel.sizes, global. sizes, X, Y, 2);

}

Figure 13: Pseudaecode for the generation of workgroups from anNDRangeKernel call

Work-Group Scheduling

The virtualization block includes a hardware scheduler that dispatches the concurrent softwareuwask

onto the available hardware functional units that implement s\goykps in the reconfigurabbecelerator

block The hardware scheduler helps thetime software to exploit the available hardware parallelism
(multiple functional units)in ger workgroup granularityi.e. each worgroup runs to completiorThe
schedul er exposes a fiRequest Queueod (-grdups@npdiont er f
ranges of worlgroups (as described later in this sectidije request queue can be mermamgpped in the

virtual address space and may be maintapeely inthe memoryof the reconfigurable blocBRAMS),

orin the standarthost memory, oin both thosenemory structuresThe number of parallel functional units

in the reconfigurable accelerator blocknbe reconfigured at rutime and depends on tlaailability of
reconfigurable/FPGA resources at any point in taeelescribed in D3.2

Figure 14showsthe functionality of the hardware scheduler when a single application dispatches a number
of work-groups forexecution. Inthe case of a single application, the NDRangeKernel execution will
exploit the available hardware parallelism to execute fasteriramdasethe overallthroughput.Figure

1l4also exemplifies scheduling the wegkoups ofFigure 12on two SAXPY functional units (hardware
work-groups). The hardware scheduler dispatches the nextgroudp in thehead of therequest queue
(FIFO), onto the first-ready functional unit in a roundobin fashion.This scheduling policy allows work
groups to complete owif-order and improve utilizatiorin this example, workgroup WG,otakes longer

than usual to execute, possibly because of longer memory access time, agddiBletes earlieThe
hardware schedulerpermits\igto start immediately on the available functional unit released by;WG

Dispatching workgroups from a single application, requires the hardware scheduler to program the base
argument addresses/values, tha@bal size andthe 3D local size only once for all functional unfsr
subsequent worgroupexecutions, thecheduleupdatesonly the 3D workgroup ID.
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Figure 14: Scheduling Work-Groups onto the available HW functional units

Figure 15 presents the functionality of the virtualized hardware scheduler when multiple applications
(1éM) di s p amupsh for vexecukion on the alable hardwareblocks (1¢ N). In the case of
multiple applications, woHgroups from different applications/processes are interleaved on the available
hardware functional units(worfiroups) to improve resource utilization. To support multiple applications,
the virtualization block schedules wegkoups from multiple perapplication (or pecontext)i Re qu e st
Queueso.

Figure 15 also depicts scheduling theork-groups ofFigure 12dispatched from multiple applications on

two SAXPY functional units (hardware woegtoups).The virtualized scheduler serves thultiple (two)

request queues in a rounobin fashionand at a per worgroup granularity. The next woidgoup to be

executed is dispatched on thiest-ready functional unit in a roundobin fashion. This scheduling policy

also allows workgroups to coplete outof-order and improve utilization. The scheduler might implement
various alternative policies to ensure fairness, e.g. deficit roulrid based on execution cycles, or QoS

aware schedulind. n t he e x ampl eytakes longer findnsual to lexecutd/@ossibly because

of 1l onger memory acce sgompletasearlieraThedhartware scheduleepermits WC
the fAblypatck 0s t\WaGr t i mmedi ately on the avail@glsd e fu
the function&units might execute worggroups from different contexts at every watoup boundary.

Dispatching workgroups from multiple contexts, requires the hardware scheduler to program the base
argument addresses/values, the 3D global size, and the 3D locavaiggime a functional unit switches

to a different context. For subsequent wgrkup executions from the same context on the same functional
unit, the scheduler updates only the 3D wgré&up ID, e.g. inFigure 15the i g r e e nyPafteViee
Agreep® NWEGEhe fiorangedo SAXPY.
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Figure 15: Schedulingwork-groups from multiple applications on the available HW functionalunits

Commandnterface

Thehardwarevirtualization blockrequest queuesupport the following commands:

1 Execute Work-Group: This command requests the execution of a single \gavkp. It can
directly implement the clEnqueueT&enCLconstruct. Theuntime software should provide the
following fieldsto execute a worgroupcorrectly.

(0]

O O O O O o

workgroup_id_xThe ID of the ¥ dimension (dimension X), 38its.

workgroup_id_yThe ID of the #dimension (dimension Y) if applicable, otherwie
workgroup_id_zThe ID of the dimension (dimension Z) if applicable, otherwise
global_size xThe global numbeof work-items in dimension X, 3Bits.

global_size yThe global number ofork-itemsin dimension Y if applicable, otherwise 1.
global_size_zThe globadnumber ofwork-itemsin dimension Zif applicable, otherwise 1.
local_size x: The local number ofwork-tems in dimension X if the kernel
callsget_local_size(0) to dynamically adjust its operation and work with varying number of
X work-items or if the req_work_group_size(X,Y,Z) attribute is not present, otherwise
this field can be unspecified, 3s.

local_size y: The local number ofwork-items in dimension Y if the kernel
callsget_local_size(1) to dynamically adjust its operation and work with vanyimiper of

Y work-items or if the reqd_work_group_size(X,Y,Z) attribute is not present, otherwise
this field can be unspecified, 3#s.

local_size z: The local number ofwork-items in dimension Z if the Kkernel
callsget_local_size(2) to dynamically adjust its operation and work with varying number of
Z work-items or if the reqd_work_group_size(X,Y,Z) attribute is not present, otherwise
this field can be unspecified, 3s.

Page 210f 35

This document is Confidential, and was produced under the ECOSCALE project (EC contract 671632).



D3.1 Specifications of HW Architecture and Prototype

0 num_worlkgroups x The number of worgroups in the X dimension if the kernel calls
get_num_groups(0), otherwise this field can be unspecifiedit82

0 num_workgroups :yThe number of worgroups in the Y dimension if the kernel calls
get_num_groups(1), otherwiti@s field can be unspecified, 3ts.

0 num_workgroups_:ZThe number of worgroups in the Z dimension if the kernel calls
get_num_groups(2), otherwise this field can be unspecifiedit82

o global_offset xfhe offset used to calculate the global ID ofwark-item in the X
dimension, helps the implementation of clEnqueueNDRangeKernel, normallyblis 32

o global_offset yfhe offset used to calculate the global ID of a witekn in the Y
dimension, helps the implementation of clEnqueueNDRangeKernel, npna2bits.

o0 global offset Zfhe offset used to calculate the global ID of a witekn in the
Zdimension, helps the implementation of clEnqueueNDRangeKernel, normallypis32

o ArgumentshA number (N) of 64bit values representing the arguments of keinethe
order specified by thelSetKernelAr@penCLcommand. If an argument is a points
is the virtual address.

0 StatusThe status of the current command is one the follow{ayy SCHEDULED, (b)
RUNNING, (c) DONE. SCHEDULED is when the software issues thenmmand.
RUNNING when thehardwarescheduler has dispatched the commaintd an accelerator.
DONE when the hardware has completed executing this-grakp.

1 Execute Work-Group Range This command requests the execution of a range of-grankps.
This command can directly implement the clEnqueueNDRangeKernelOpenCL construct and
behaves like the pseudo coaeFigure 13.The runtime software should provide the all the fields
required for a single worgroup plus the following additional fields:

o workgroup_id_end_:xThe ID of the last worgroup in the range of the®Xdimension
(dimension X), 3zbits. The ID of the first workgroup in the range of the'Himension is
specified in the fieldvorkgroup _id_x.

o workgroup_id_end :yThe ID of the last worgroup in the range of the th&@mension
(dimension Y) if applicableotherwise the valueorkgroup_id_y 32-bits. The ID of the
first work-group in the range of thé“limension is specified in the fieldorkgroup_id_y.

o workgroup_id_end :ZThe ID of the last worgroup in the range of the th&@mension
(dimension Z) if applicable, otherwise the valerkgroup_id z 32-bits. The ID of the
first work-group in the range of thé@limension is specified in the fieWorkgroup_id_z.

9 Barrier: This command helps software to be notifieih the status flagwhen all commands that
have been issued before the barrier have completed. Moreover, this command acts as a fence and
prevents reordering between previous and next commands.
0 Status:The status of the barrier is oné the following: (§ SCHEDULED, (b) DONE.
SCHEDULED is when the software issues the command. DONE when the hardware has
reached the barrier.

1 Translation Setup: This command can be used by the software to setup the translatiofotable
given process/context discussedn Section 3.2.
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3.2 Userspace Direct Accesses

As described in Section 2.2, a Worker can directly access a remote Reconfigurable Block and the remote
Reconfigurable Block can directly access the memory of a Worker. These memory accesses are routed by
thelocal interconnects of the Workers and the global interconnect of the UNIMEM architecture. There are
three different address spaces involved in this scenario:

1 The Virtual Address (VA) spacehich is the set of ranges of virtual addresses th&@panating

System(OS) makes available to a user application. Thus, the user application can perform
load/store operations only in the VA space.

The Physical Address (PA) spaaghich provides an address mapping for routing the memory
accesses inside a Worker. Tloense of such memory accesses can be the processor or the external
port of the Worker and the destination can be the local memory, the local memmppgd 1/0O

devices, or the memonyapped external port. The OS maps virtual pages to physical pages by
configuring the MMU of the processor. The MMU is responsible for translating virtual pages to
physical pages.

In a UNIMEM architecture the address mapping of the PA space includes a large region for direct
accesses to the external world (i.e. a large windown#mories and /O devices of remote
Workers). In ECOSCALE this window is large enough to support all the shared memories and
memorymapped I/O devices of the PGAS, i.e. the Global Address space described below.

The Global Address (GA) spacehich providesan address mapping for routing the memory
accesses inside a PGAS. The source and the destination of such memory accesses can be the
external port of any Worker or any Reconfigurable Block in the PGAS. In ECOSCALE the shared
memories in the PGAS (i.e. thetal GA space) is smaller than the window of the PA space, thus

the translation of an external PA page (i.e. a PA page belonging to the external window) to a GA
page or vice versa is trivial. The APHY to GlI
append some bits from/to the address.

Worker 0 Worker 1
Processor
SW : HW Processor
0s Cdf?f‘- Cache
% Local Cache Coherent
: MMU Interconnect
User /:ﬁ"PA PAT 1PA
h Reconf.
Block
Local Cache Coherent Interconnect
PA " PA PA
PHY to Global Global PHY to
Global to PHY to PHY Global
lea GA| lca

‘ Global Interconnect ‘

Figure 16: Virtual, Physical and Global Address Spaces.

The redarrows inFigure 16 show the transitions between the address spaces for a remote memory access
sent from an application running on Worker 0 to the Reconfigurable Block in Worker 1. The green arrows
show the trasitions between the address spaces for a remote memory access sent from the Reconfigurable
Block in Worker 1 to Worker O.
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The Reconfigurable Block performs remote accesses in order to read or write the arguments of the
accel erated wor k gchoaocpsses dréh generdtéddousing dhie infsermnation included in
itriggero commands issued by the us&8l. Hawverthecat i o
application can only provide VAOGs in the hBtrigg
Reconfigurable Block has to generate a PA from the correspondingl’V/Arder to perform this
translationwe will investigate several different approaches as listed below.

A first promisingappr oach i s to wuse an |/ O MMuUardward iinc h tr
ECOSCALE we use an address transl ation tabl e, w h
the initializatioriconfiguration phaseof the application the application issues system calls in order to
configure the address translatitable ofthe remote Reconfigurable Blodk wants to usdred arrows in
Figurel7).Each entry of the translation table includes the mapping of a Worker ID (WID3 siddpage

to a PA page. Next the application can trigger the executiomwi r Kk gr oup wusing the
included in the remote translation table without the intervention of the OS (green arrow). Finally, the
Reconfigurable AccwhechtaregéenanatastetWAbs PAOG6s b
to be routed to the correct destination (purple arrow).

Worker 0 Worker 1
Processor
Processor
User
Reconf. Block
Add VA 1

Trigger ({WID,VA}) Accelerator

E | |{WID,VA}
WID,VA} >P i{ 4 I il = Translation

Block

Local Cache Coherent Interconnect

| | ¥ PA
Yy v 1

PHY to Global Global PHY to
Global to PHY to PHY Global

b |

‘ Global Interconnect ‘

Figure177Addr ess Transl ation Table used to transl ate
PAOGS.

Theaforementioned mechanism can work only if the following conditions are met:

1 The data accessed by the Accelerator block is pinned in the memory of Worker 0. Essentially the
purple arrow should not access a page that is not in the memory of Worker 0 aradegarmage
fault.

1 The Translation Table can always provide a physical address. This means that all the virtual pages
accessed by the Accelerator block should be included in the Translation Table. So if the data of the
arguments of an accelerated workgraupsses several physical pages then the user has to send
multiple configuration command#n case of a miss in the Translation Table the Reconfigurable
Block will signal an interrupt to Worker, Gtating that the translation table is not configure
propety.

Another approach that will be studied is to bypass the Translation (l.@btbe requests initiated from the

Accelerator block will not go through the Translation Tablhis is useful if the Accelerator block can

generate directly physical addresses, which is possible only if Worker 0 can provide physical addresses to
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the Accelerator block (green arrow). In this case the user application should either store the physical
addresses of the arguments of the accelerated OpenCL workgroup or it has to make a system call.

Finally we will investigate the use of the ARM SMMU (System Memory Management’ iityded in

the Processing System of the Ultrascale+ FPGA translatingAhef incoming memory accesses to PA.

While thisseems to béhe most efficient approach it might be hard to program and use an ARM SMMU
since several limitations have been noticed in the past (for example in the Juno board the SMMU supports a
single chanal) while several functionalities are not explained in detathen\SMMU specificationgfor

example allocating and assigning SMMU channels to different applications is not explained).

3.3 Reconfigurable Accelerator Block

Each reconfigurable acceleratiblock implements onaork-group (WG) of an OpenCkernel. Multiple

blocks implementing the same WG can be allocated to the same or to different FPGASs, in order to achieve
more parallelism. Multiple applications that call the same kernel can use the same reconfigurable
accelerator block through the virtization block, in order to share resources. The reconfigurable
accelerator block receives the kernel arguments and the WG identifier from the virtualization block, and
accesses the system memory via the UNIMEM mechanism. For more details about hovotiesaré
handled at design time, compilation time, and execution time the reader is referred to deliverable D3.2.

*http://infocenter.arm.com/help/index.jsp?topic=/com.arm.doc.ihi0062b/index.html
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4. Interconnection
The Xilinx Vivado development tool provides full featured AXI interconnect interfaces. In the initial
project phase, these embedded interconnects will be used to validate the basics of the project architecture.
In the second phase the AXI interconnedt be substituted by the more efficieBTNoCcommunication
architecture which will beleployed in the programming logic of the ECOSCALE boards. STNoCsoffer
better scalability,routing and quality of serviceas well asparallelismwhen comparedo the generic
embedded AXI interconnectthat will be utilized in the first implementation of the ECOSCALE
architecture

4.1 Interconnection protocols

The Xilinx Zyng FPGAsembed an AXdbased multilevel interconnect, offering support for ACE/AGE
coherent protocols and classical AXI3/AXI4 protocols. ARM AXI interconnection protocols are
extensively used in industry atige academic worldSpecifications for these protocols can be iolei for

free from ARMswebsité and arealsodescribed irthe Xilinx documentatior's that can be obtained freely.

4.2AMBA

As reported in WIKIPEDIA, the ARM Advanced Microcontroller Bus Architecture (AMBA) is an open
standard, ofthip interconnect specifitan for the connection and management of functional blocks in
systemon-a-chip (SoC) designs. It facilitates development of muilticessor designs with large numbers
of controllers and peripherals. Since its inception, the scope of AMBA has, despitaniés gone far
beyond micro controller devices

AMBA was introduced by ARM in 1996. The first AMBA buses were Advanced System Bus (ASB) and
Advanced Peripheral Bus (APB). In its second version, AMBA 2, ARM added AMBA-pkgformance

Bus (AHB) that is a sigle clockedge protocol. In 2003, ARM introduced the third generation, AMBA 3,
including AXI to reach even higher performance interconnect and the Advanced Trace Bus (ATB) as part
of the CoreSight orchip debug and trace solution. In 2010 the AMBA 4 speatibns were introduced
starting with AMBA 4 AXI, then in 2011 extending system wide coherency with AMBA 4 ACE. These
protocols are today the de facto standard fobiBand 64bit embeddedorocessa’ Network on Chip

(NoC).

4.3 Network on chip (NOC)

A key element in the design of ECOSCALE is the globathip communication infrastructure, because its
throughput, latency and power consumption set the limit to the overall performance of the overall
computing platform. The traditional shared bus apgroachibits its limits as the number of integrated
processing cores (CPUs and Reconfigurable cdresgases. While gate delay scales with each new
technology node, global wire delay increases and can be kept constant only by inserting repeaters. For this
reason shared bus communication standards are being substituted bylayettiinterconnects, now
commonly referred as NoC, when designing meose systems. The NoC paradigm leverages the
networking and parallel computing domain experience into the Sw@.wt is implemented by a layered
packetswitched micrenetworks that include Physical, Network afmnsport layersSTNoC isa high end

novel NoC developed by STMicroelectronics and already utilized in the most advanced
STMi croelectronicsd SoCs.

®http://infocenter.arm.an/help/index.jsp?topic=/com.arm.doc.ihi0022d/index.html
7http://www.xiIinx.(:om/support/documentation/ip_documentation/axi_ref_guide/v13_4/ug761_axi_referen(:e_guide.pdf
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Figure 18: The NoC paradigm
4.4 STNoC overview

At a glance, STNoC is a sourbased routing wormhole switching NoC built upon a parametric set of
Initiator and Target network interfaces, routers, and links components. With thebeifding blocks, a
designer can build any topology, from very regular to totally custom. At this stage, the only limiting factor
is that STNoC supports AXI3, AXI4, and AGEe protocols at the network boundaries, with the ability to
connect data busse$ 32, 64, or 128 bits, in memory spaces of 32 or 40 bits. STNoC rcuigpsrtup to

5 input and 5 ogtut portsand this isnot a limiting factoy since this magic number is the best traffein

terms of frequency, power and area in CMOS technologiek s the 28 FDSOI.

STNoC is supported by a very powerfulinuse designed EDA toslite called INoC. To build up an
STNoC interconnect, a designer must know

- the list of its initiators

- the list of its targets

- amemory map (for routing requésinsactions)

- an ID map (for routing response transactions)

- atopology

- the different settings for the offered services
Capturing all these settings into INoC, the tool generates:

- the resulting RTL for the designed STNoC (VHDL)

- documentations

- entry pointsand configuration files for the verification environment

4.5 STNoC architecture

The STNoC architecturéhat will be utilized within ECOCALEBEwill haveAXI network interfaces, routers
and links.The AXI network interfaces can be configured to support AXI3, AXI4 or A& protocols
seamlessly. The topology will beptimized so as to offer higher performance, within the ECOSCALE
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concept, than the existing standakX! interconnectin the Xilinx Ultrascalet devices/boardsUsing
STNoC it is possible to implement the communication among different chips with a unique interconnect
that is split in different programming logic

CPU . DDR

SRAM
1P N . ———
H Router Peri ph
DMA /v Router

Figure 19: Example STNoC architecture.

4.6 STNoC memoy map and services

ECOSCALEUutilizes theUNIMEM approachso all the initiators from the different interconnected boards
see the same unified memory space. STNoC supports meaddrgssesanging from 32 to 40 bits.
Depending on the selected architectusd,NoC can support either single memoryrange scheme
replicatedto all the FPGA=r a separate memory range for each connected reconfigurable block; the only
limitation is that the overall memory range across all the connected reconfigurable bloct1i8 bips.

STNoC offers the following services:

- Size conversion between initiator and target data bus size2{&mdi size conversion) or between
any 2 STNoC building blocks thanks to a specialized adaptive link.

- Frequency conversion, hence the possibitithave several clock domaiat the orchip level to
serve initiators/targets running at different clock frequencies

- support for 2 virtual networks, if required

- routing, isautomaticallycomputedgeneratedby theinformation available in associated
devdopment tools that are provided by the SoC architecture

- low silicon cost when no frequency and no size conversion is required
- efficient QoSsupport based on the noweBA (fair bandwidth allocation) algorithm

- advanced services like routing and Qo®regrammability, near perfect clock gating, address
interleaving (for platforms with 2 or more DDR channels) are alsooamd.While these services
are not foreseen aseful forECOSCALE we will evaluate later in thgroject if we embed them
or not.
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5 Hardware Platform

Ultrascale is a Xilinx programmable architecture, first implemented at Z0itnascale)and now at 16nm
(Ultrascale+). Both architecturespan multiple nodes from planar through FIinFET technologies and
beyond, while also scaling from monolithic through 3D I@stially, Ultrascale started &0nm and
offered an ASICclass all pogrammable architecture to enable mblindred gigabiperseond levels of
system performance, scaling to terabits and terafliiags have now moved even further with fiéam,
UltraScale+ familiesthat combine new memory, 3bn-3D, and multiprocessing SoC (MPSoC)
technologies.

According tothe specifications ofhe UltraScale+portfolic®, it is comprised of the KintexJItraScale+

FPGA and VirtexUltraScale+ FPGA and 3D IC families, while the ZyngUItraScale+ [famcludes the

all programmable MPSoCdn addition, it is claimed thaUltraScale+ devicegprovide 2i 5X greater
systemlevel performance/watt over 28nm devices, far more systems integration and intelligence, and the
highest level of security and safety.

Some of the key Ultrascale+ features and advantage$) aext generation routing, ASHike clocking,

and enhanced logic bloclalowing for a 90% utilization ii) high-speed memory cascading to remove
bottlenecks in DSP and packet processifjgenhanced DSP slices incorporating 273diBmultipliers and

dual adders,iv) stepfunction increase in 3 IC interdie bandwidth for virtual monolithic design
v)bandwidth and latency reduction through multiple integrated A®€s blocks for 100G Ethernef)

static- and dynamiegpower gating across a wide range of functional elemeiifsext-generatiorsecurity

with advanced approaches to AES bitstream decryption and authenticatievhfiegation, and secure
device programmingyiii) DDR4 support of up to 2,666 Mbh/and ixX)MPSoC technology, combining soft
and hard engines for real time contrgtaphics and video processing, waveform and packet processing,
and multilevel security, safety and reliability

With regard to the last)ltraScale+ MPSoCs are built around a gaate ARM CortexA53 and duatore
ARMCortexR5 processing system (PS). ladition to the 32bit/64-bit application processing unit (APU)
andthe 32-bit reattime processing unit (RPU), the PS contains a dedicated ARM4A@alMP2 graphics
processing unit (GPWjurthermore severalperipheralsmodules can be connected to the pesorsFor
instance, ér interfacing to external memories for data or configuration storage, the PS inclodgs- a
protocol dynamic memory controller, a DMA controller, a NAND controller, an SD/eMMC conteaikér
a Quad SPI controller. In addition totérfacing to external memories, the processing units clatin
their level 1 and/or level 2 caches and 256KB ofthip memoryNaturally, high-bandwidth connectivity
based on the ARM AMBA AXI4 protocas offered thatonnects the processing unitsiwihe peripherals
and provides interface between the PS and the programmable logic (PL).

A Zynqg UltraScale+ MPSoC consists of two major underlying blocks PS and PL in two isolated power
domains. PS acts as one standalone MPSoC and is able to bapeaatdwithout powering on the PL.

The PS and PL can be coupled with multiple interfaces and other signals to integrateateer hardware
accelerators and other functions in the PL logic that are accessible to the prodédsassan ideal setup

for the ECOSCALE plans since the Ultrascale+ Hegrel block diagram shows that it can facilitate a

Awi ndowdo for the UNIMEM architectur e ,figure@ulgh t he

Bhttp://www.xilinx.com/products/silicomlevices/soc/zyngltrascalempsoc.html
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specific, & shown in the address mapping-igure 21, the A53 processor of the Ultrascale+ FPGA aas
448 GByteregion for accessing the external wdlllL = 448GB")

Furthermore, the Ultrascalgprocessorgan also access memory resources in the processing system. The
PS 1/0O peripherals, including the static/flash memory interfaces share a multiplex@di©) of up to 78

MIO pins. ZynqUIltraScale+ MPSoCs can also use the I/Os in the PL domain for many of the PS I/O
peripherals. This is done through an extended multiplexed I/O interface (EMdD)e20.

After a system reset, the PMU system automatically initializes the system and CSU ROM executes the first
stage boot loader from the selected external boot device. The process enables you te ¢baflgidSoC
platform as needed, including the PS and the@itionally, the JTAG interface can be enabled to provide
access to the PS and the PL for test and debug purfptmesr to the PL can be optionally shut off to
reduce power consumption. Tarther reduce power, the clocks and the specific power islands in the PS
(for example, an APU power island) can be dynamically slowed down or gated off.
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Figure 20: Zynq Ultrascale+ MPSoC toplevel block diagram

The addressesisal betweenthe various processing system (PS) mastssvell asbetweenthe system
memory management unit (SMMU) are virtual addresaeshown irFigure21. The address bus (from
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master to SMMU) is 48 bits for the @it compliant PS masters. The-BR2 PS masters provide a3#
address bus, which is zeeatended to 48 bits. The SMMU suppofit addreses For PSmasters, the

49" address bit to the SMMU is zero, and the address bus from the programmable logic (PL) AXI
interfaces into the PS is 49 bits. ThelBcompliant PS masters provide-B&8 addresses and include the
APU, PCle, SATADisplayPort, FPEDMA, USB, GEM, SD, NAND, QSPI, CSIDMA, and LPDDMA
interconnects.

S£=DIL SO-DIL 4U-DIT

1TB
Reserved for DDR (256 GB)

PCle (256 GB)

768 GB

PL= 448 GB 512GA
(PLO=PL1=224 GB)

DDR (32 GB)
PCle (8 GB)

64 GB
32GB

24 GB

PL (8 GB) (PLO = PL1 = 4 GB)

16 GB
Reserved (12 GB)

CSU, PMU, TCM, OCM (4 MB)
LPS slaves including LPS top slaves (12 MB)

4GB

LPS slave including CoreSight extension (16 MB)

FPS slave including FPS top slaves (16 MB)

Reserved (63 MB)

RPU low-latency port (1 MB)

CoreSight system trace module 4 MB per master ID (16 MB)
Reserved (128 MB)

Lower PCle (256 MB)
Quad-SPI (512 MB)
PL1 (256 MB)
PLO (256 MB)
PL2 (512 MB)

3GB

DDR (2 GB)

Figure 21: Global system address map

As already mentioned, tHeSPL interfaces aréased on the AMBA AXI standard and they can support
i)high-performance AXI4 interfang with FIFO support in the P4H) variable data bus width.e. 32, 64,
and128§, iii)independent read and write clocksd,iv) path through the system memory management unit
(SMMU) for address translatisgincethe PL carwork with virtual addresses.

Additional features supported include)l/O coherency through the caecbeherent interconnect
(CCl),ii)dedicated lowlatency path between the lgwower domain (LPD) and RLiii)an acelerator
coherency port (ACP) interffaceforo her ency and direct al bBndigganAXlon i n
coherency extensions (ACE) interface for full coherency

Finally, specific mention needs to be provided on the reasons behind considering Ultrascale+ as the suitable

platform for ECOSCA E 6 s initial devel opment al needs. Bas
envisaged and presentedFigure 2, it becomes apparent that the likely candidates canrbewed down
t o Xi | i nx#patfotn ahd tleedately Bremounced Intel+FPGA platform by Intel, which recently

acquired Altera.

Investigating the hardware architecture of the two platforms, it can be realised that they offer a substrate
onto which the proposed ECOSCALE architecture can fit and put into work with relative ease, i.e. they
offer powerful processing systems as wellhigh-end FPGAs with two, however, distinct differences.
First, in contrast to the Intel+FPGA platform, the Ultrascale+ platform is already available on the market
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while, second, the former shall have a considerably greater power consumption footpsinifthétinto a
region that is unacceptably | arge for ECOSCALEOGS
ECOSCALE consortium hasoncluded onto the employment of Ultrascale+ as a development platform

that balances higand, highperformance belviour with acceptable power consumption.

5.1 ECOSCALE Prototypes

The final ECOSCALE prototype will consist of multiple (abo8) Interconnecteghrototypecards, which

will form together an ECOSCALE PGAShe prototypecard which will address all the ECOCAL EO s
requirementswill be developed by the ExaNeSt project. It will support 4 Ultrascale+ FPGAs, 18 GBytes
of memory per FPGA, an SSD and multiple hggieed links for internal and external communication. The
ExaNeStprototypecard will become availablin Q3 2016.

Meanwhile, we plan to use other available commercial Ultrascale+ boards. While such development boards
support a single FPGA -dansity solutioe they dre goddt cangidates/fordhe h i
initial development of the ECOSCAL& chitecture until the ExaNestain prototypecard is available.

The following Ultrascale+ boards will soon become available in the market and they are potential
development platforms for ECOSCALE:

§ The Trenz boardTrenz Elecronic TE0808is an MPSoC module integrates a Xilinx Zyng
UltraScale+, max. 8 GByte DDR4 SDRAM with &4t width, max. 512 MByte Flash memory
for configuration and operation, 20 Gigabit transceivers, and powerful switcle power
supplies for all orboard voltages. T Trenz board is plugged into a Trenz board which provides
external connectivity and power supply. The
will be available around about end of May. ECOSCALE will use this platform as soon as it
becomes avkble.

§ The iVeia boardiVeia Atlaslil-Z8 SoM?° supports a Xilinx ZynqUItraScale+ and it is available
in limited quantities. Howeveithe carrier card is not available yet. The cost of the boards is
around 5200 euros.

1 The Xilinx development boardThe Xilinx ZCU102 development supports a Xilinx
ZyngUItraScale#PGA and it is estimated to be available in a few months.

5.2 Final Hardware Prototype

Theprototypec ar d from the ExaNeSt project is estimated
SSD + 0.5 k0 x other components + 2 KkpiototypecBr@B) . T
and thus the final prototype can support aroundflthosecads. This prototype wilsupport 64 Xilinx
Ultrascale+ FPGAgeatuiing:

64 64bit quadcoreCortex A53

64 x 600 = 38.4 K logic cells

64 x 18 = 1.152 TBytes of DDR4 memory
16 x 960 = 15.4 TBytes of SSD storage

=A =4 =4 4

® hitp:/Mvww.trenzelectronic.de/products/fpgaoards/trenzlectronic/te080&yncultrascale. html
10 http://www.iveia.com/atlaii -z8x
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EachUltrascale chip, including both CPUs arfePGA resources;orresponds to an ECOSCALE worker,
while the 16 interconnecteBxaNeStprototype cards (including 16 x 4FPGAs64 Workers in total)
correspond to an ECOSCALE Compute Nddehis waythe prototype will support a full Compute Node.

The interconnectiotopologyof the 16prototypecards will be based on the results of the ExaNeSt project.
We estimate that ExaNeSt will propose at@lus topology, as shown Figure22, or a 3Dtorus topology

for direct communication between theototypecards that fornthe Compute NodeSome links coming of

the prototypecards will be connected to an external router that will be responsibletdocannecting the
Compute Nodes togethéfor potential future extensions of the ECOSCALE prototype) or the daughter
cards of a Compute Node depending on the interconnection topology specified by the ExaNeSt project

ExaNest | |
DCard

ExaNest
DCard

ExaNest
DCard

ExaNest

DCard B

ExaNest
DCard

ExaNest ExaNest ExaNest
‘ DCard DCard DCard

ExaNest ExaNest ExaNest
‘ DCard DCard DCard
ExaNest | | ExaNest || ExaNest
DCard DCard DCard
' = —

Figure 22. ExaNeStprototype cards interconnected in 2Btorus topology to form a Compute Node.

ExaNest

DCard B

ExaNest
DCard
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6 Conclusions

This deliverable has been responsible for laying out the specifications for the ECOSCALE hardware
architecture as well as the ECOSCALE prototyfiest, ashort background review is offered that presents

a highlevel view of the ECOSCALE architecture. This helps in constructing an outline for the sub
elementsSpecifications presented later.

First, the UNIMEM architecture is addressed and specifically howilitbe developed within the context

of ECOSCALE. Its main purpose is to facilitate memory cohmr@lands, i.e. cache cohereand in the

case of EOSCALE such a coherence island is a unique Worker Node (a collection of Workers is what
makes up a Comype Node).

Each Workeshall support a physical address mapping for accessing its local memory, its local peripherals
and a "window'to the external world. The details for those actions are defined and it is decided that static
mapping will be used for dict memory access that supports the entire global address Bpdbermore,

one key ECOSCALE feature is the ability for remote caobleerent accesses, hence, two different
UNIMEM memory models are described, both of which will be supported by the ECESS/Astem.

Subsequently, the UNILOGIC architecture is described that builds upon thexistieg UNIMEM
architecture in order to facilitate efficient distributed reconfigurable acceleration through parallel access of
reconfigurable blocks by different Waars.

Next, the details and workings of the Hardware Virtualization Block are defined in order to form a set of
specifications for its operation. This virtualization block is responsiblexecutingOpenCLworkgroups
belonging to either the same or diffat(or both kernel calls ontahe availablehardware verkgroup set in

the PL fabric. This is a laborious and complicated task that requires the clarification of several issues such
as how to split an OpenCL kernel ND range into diffekgotkgroups angberformworkgroup scheduling

in relationto those available in the reconfigurable accelerators and all this under different OpenCL kernel
call scenarios.

Another significant element of the ECOSCALE architectut@ich merits detailed investigation in order
extract a set of specifications to which it will have to adheris tine memory accesses routed by the local
interconnects of the Workers and the global interconnect of the UNIMEM architecture. For this, three
different address spaces are identifiegl, the Virtual Address space, the Physical Address space and the
Global Address Space.

Naturally, the ECOSCALE system heavily relies upon interconnection protocols that must ensure that it
operates within specifications. The interconnection protocalswiiil be used for efficient Worker Node
communication are the AXbased multievel interconnect for PL and ARM (PS) communication
Furthermorea Networkon-Chip modelcalled STNoGwill be utilisedas a greater eohip communication
infrastructurefor the final ECOCALE prototypeconsisting of AXI network interfaces, routers and links in
order to provide a topology that supports the ECOSCALE Compute Node at a perfotevahteat is

greater than that achieved by the initial ECOSCALE platformUiteascale+.

This brings us to the closing stages of the deliverable since here is where the spesifi€dtieractual
implementation platforms are defined. First, ingreedhat a Xilinx demonstration platform will be used,
i.e. Ultrascale+, since iconsists of a higend Zyng FPGA as well as powerful & communication
through highperformanceAXI ports. The later stages of ECOSCALE, however, will lead to a final
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hardware prototype that will be much more powerful. This is going to be based epomtbtype card of
a different project, i.e. ExaNest, enrichadadditional Ultrascale+ FPGAs
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