
Page 1 of 35
This document is confidential, and was produced under the ECOSCALE project (EC contract 671632)

Project No: 671632

D3.3 Specification of System Software and Programming Model

May 19, 2016

Abstract:

This document summarizes the specification of the runtime system and the programming model to be used with the

distributed heterogeneous hardware platform being developed in the ECOSCALE project.

Document Manager

Paul Harvey QUB

Document Id N°: ECOSCALE_D3.3 Version: 1.13 Date: 19/5/2016

Filename: ecoscale_D3.3_v1.13.docx

Confidentiality

This document contains proprietary and confidential material of certain ECOSCALE contractors, and

may not be reproduced, copied, or disclosed without appropriate permission. The commercial use of

any information contained in this document may require a license from the proprietor of that

information.

Page 2 of 35
This document is confidential, and was produced under the ECOSCALE project (EC contract 671632)

The ECOSCALE Consortium consists of the following partners:

Participant no. Participant organisation names short name Country

P1 (Coordinator) Telecommunication Systems Institute TSI Greece

P2 Queen's University Belfast QUB United Kingdom

P3 STMicroelectronics STM Italy

P4 Acciona ACC Spain

P5 University of Manchester MAN United Kingdom

P6 Politecnico di Torino POLITO Italy

P7 Chalmers University of Technology CHAL Sweden

P8 Synelixis SYN Greece

The information in this document is provided “as is” and no guarantee or warranty is given that the

information is fit for any particular purpose. The user thereof uses the information at its sole risk and

liability.

Revision history

Version Author Notes Date

1.0 Paul Harvey Initial version 14/04/2016

1.1 Luciano Lavagno Comments and questions 23/04/2016

1.2 Paul Harvey Addressing Comments and Questions 25/04/2016

1.3 Ignacio Munárriz,

Manuel Palomino,

Javier López

Comments and questions 27/04/2016

1.4 Joel Svensson Comments questions and minor edits 27/04/2016

1.5 Paul Harvey Addressing and Posing Comments and Questions 28/04/2016

1.7 Luciano Lavagno Comments and Edits 2/5/2016

1.8 Paul Harvey Addressing Comments & Questions Complete Draft 3/5/2016

1.9 Paul Harvey Final Version 13/05/16

1.10 Edson Horta Internal Review 18/5/2016

1.11 Paul Harvey Addressing Comments in Internal Review 19/5/16

1.12 I. Sourdis, V.

Papaefstathiou

Internal Review 19/5/16

1.13 Paul Harvey Final Version 19/5/16

Page 3 of 35
This document is confidential, and was produced under the ECOSCALE project (EC contract 671632)

Table of Contents
1 Executive Summary ... 6

2 Introduction .. 7

2.1 The ECOSCALE Project ... 7

2.2 Motivation ... 7

2.3 Document Outline ... 8

2.4 Glossary of Acronyms ... 9

3 Assumptions ... ˻΄͙͋͊͟Η ˭͊͊͒͊͟͟͡ ͔ͤ ͔͔͔ͦͨͪ͒ͤ͊͡Φ10

3.1 Assumed Hardware Architecture .. 10

3.1.1 FPGA .. 11

3.2 Operating Environment .. 12

4 Programming Model ... 13

4.1 Computation ... 13

4.1.1 OpenCL .. 13

4.1.2 Proposed OpenCL Abstraction .. 15

4.2 Data ... 18

4.2.1 OpenCL Memory Model .. 19

4.2.2 Proposed OpenCL Extension ... 19

4.3 Compilation ... 20

4.4 Summary ... 21

5 Runtime System .. 22

5.1 Architecture .. 22

5.2 Scheduling ... 22

5.2.1 Unit of Schedulability .. 23

5.2.2 Preemption ... 23

5.2.3 Device Level Scheduling .. 23

5.3 Memory Architecture.. 25

5.3.1 Synchronisation via Memory Barriers ... 25

5.3.2 Memory Distribution and Coalescence ... 25

5.4 Data Synchronisation .. 26

5.4.1 Kernel Data Sets .. 26

Page 4 of 35
This document is confidential, and was produced under the ECOSCALE project (EC contract 671632)

5.4.2 Runtime Accounting Data ... 26

5.5 Resilience .. 27

5.5.1 Computation ... 27

5.5.2 Data ... 27

5.5.3 Programmer Impact .. 28

6 Addressing the Requirements in D2.1 .. 29

7 Summary ... 30

8 References .. 31

9 Appendix A: Worked Example .. 32

Page 5 of 35
This document is confidential, and was produced under the ECOSCALE project (EC contract 671632)

List of Figures

Figure 1: Assumed View of the ECOSCALE platform (Simplified) ... 10

Figure 2: Networked Nodes .. 11

Figure 3: Architecture of the OpenCL Framework .. 13

Figure 4: Programmers view of a hardware device .. 15

Figure 5: Real view of Hardware Devices .. 15

Figure 6: Software Abstractions .. 17

Figure 7: The ECOSCALE runtime architecture ... 22

Figure 8: ECOSCALE Runtime Scheduling of Workgroups across Multiple WORKERs 24

Page 6 of 35
This document is confidential, and was produced under the ECOSCALE project (EC contract 671632)

1 Executive Summary
This deliverable encompasses the work performed in Task 3.3: Specification of Systems Software and

Programming Model. Its main objectives are to:

¶ Describe a software runtime which will execute applications on the distributed

heterogeneous hardware architecture being developed in ECOSCALE.

¶ Describe the programming environment with which to create applications to be executed

by such a runtime

Both the programming model and the runtime system are being developed to meet the application

specifications which were presented in deliverable D2.1. Specifically, the smart-city services and

reservoir simulation applications, but also is influenced by the observations on the other potential

applications noted in that document.

In brief, the programming model is an extended version of the OpenCL framework, a SPMD

programming model. The runtime will be based upon the distributed OpenCL framework SnuCL,

which will be modified, enhanced, and extended to execute on the distributed heterogeneous

hardware platform being developed in the ECOSCALE project.

The purpose of this document is to specify the interface to the programmer, and describe how an

application executing on this runtime will behave. This document is not meant to give detailed and

specific information on how the runtime is to be implemented, but how it will interact with the

programmer above, and the hardware below.

Page 7 of 35
This document is confidential, and was produced under the ECOSCALE project (EC contract 671632)

2 Introduction
This deliverable is the output of task T3.3 of the ECOSCALE project, and has been informed by the

content of deliverable D2.1. It presents the design and specification of a programming model for the

distributed heterogeneous hardware platform being developed as part of the ECOSCALE project, as

well as a software runtime to execute applications expressed via the programming model on this

hardware platform.

2.1 The ECOSCALE Project

In order to reach exascale performance, current HPC platforms need to be improved. Simple scaling

is not a feasible solution due to the increasing utility costs and power consumption limitations. Apart

from improvements in implementation technology, there is a need to refine HPC application

development as well as the architecture of the future HPC systems.

The ECOSCALE project aims to tackle this challenge by employing a scalable programming

environment and hardware architecture tailored to the characteristics and trends of current and

future HPC applications, reducing significantly the data traffic as well as the energy consumption and

delays. The ECOSCALE project will follow a holistic approach, providing a novel heterogeneous

energy-efficient hierarchical architecture, a hybrid MPI+OpenCL programming environment and a

runtime system. The ECOSCALE architecture, programming model and runtime system will follow a

hierarchical approach, where the system is partitioned into multiple autonomous Workers. Workers

are interconnected in a tree-like structure in order to form larger Partitioned Global Address Space

(PGAS) partitions, which are then hierarchically interconnected via an MPI protocol.

To further increase the energy efficiency of the system as well as its resilience, the ECOSCALE

Workers will employ reconfigurable accelerators that can perform coherent memory accesses in the

virtual address space utilizing an IOMMU. The ECOSCALE architecture will support shared partitioned

reconfigurable resources accessed by any Worker in a PGAS partition, and, more importantly,

automated hardware synthesis of these resources from an OpenCL-based programming model.

2.2 Motivation

In order to meet the increased computational demands from current and future HPC applications,

current HPC hardware needs to be improved.To answer this need, modern hardware platforms are

increasing both the number and types of physical processing elements that they contain. As the

number and type of devices increase, the ability to use existing programming approaches does not.

For example, the ability to maintain cache coherency between the devices found in an HPC system

does not scale. This acts as a barrier to the use of the ubiquitous shared memory programming

model. Also, in order to program existing and new HPC platforms, a number of different

programming models have been developed. These range from very basic approaches, which require

the programmer to manually specify large amounts of detail, to very abstract approaches, where it

can be difficult to describe non-trivial applications due to the high level of abstraction. In all cases,

these models are targeted at domain experts, and can often be a barrier to entry for scientists or

non-experts, the intended users of these platforms.

In order to address the programmability of modern HPC platforms, this work proposes two

approaches.

Page 8 of 35
This document is confidential, and was produced under the ECOSCALE project (EC contract 671632)

First, by using a partitioned global address space (PGAS) memory model, the shared memory space

of either a single or multiple applications can be separated into multiple domains of varying size. In

this way, the requirement to have global cache coherency across an entire hardware platform is

removed, instead creating many smaller domains which can be more easily managed. This approach

is better able to scale with the hardware.

Secondly, this work will build upon and extend the popular and widely used OpenCL programming

model. This model supports a PGAS memory model, as well as being able to succinctly express

parallelism for a range of different devices, without requiring multiple versions of an application.

The use of a PGAS programming model and OpenCL will both simplify the creation of HPC

applications, as well as improving theutilisationof current and future HPC platforms in a scalable

manner. The combination of these technologies, and the advancements specified in this document,

will enable the creation of exascale applications, and the efficient and effective utilisation of

exascale hardware.

2.3 Document Outline

This document is split into six main sections.

¶ The first describes the considerations which are made by the design of the programming

model and runtime. This is essentially a summary of pertinent points from D3.1 and D3.2.

¶ The second describes the programming model which will be presented to the user to enable

them to take advantage of the underlying heterogeneous parallel hardware platform.

¶ The third describes the runtime system which will take applications and execute them on

the heterogeneous hardware platform in a way which maximizes both performance and

power efficiency.

¶ The fourth describes how the design in this document addresses the requirements stated in

D2.1.

¶ The fifth is a summary of the points made in this document.

¶ There is also an appendix with an exemplar application which uses the programming model

expressed in this document.

Page 9 of 35
This document is confidential, and was produced under the ECOSCALE project (EC contract 671632)

2.4 Glossary of Acronyms

Acronym Definition

CO Confidential

CV Computer Vision

CPU Central Processing Unit

D Deliverable

FPGA Field-Programmable Gate Array

GPU Graphical Processing Unit

HPC High Performance Computing

PGAS Partitioned Global Address Space

PU Public

SPMD Single Program Multiple Data

T Task

SVM Support Vector Machine

WP Work Package

Page 10 of 35
This document is confidential, and was produced under the ECOSCALE project (EC contract 671632)

3 Context
Before discussing the programming model and runtime system, it is both useful and necessary to

describe the expected interactions with the hardware environment and the operational modes of

applications.The interactions with the hardware platform have been informed by the descriptions in

D3.1 and D3.2. As the runtime system and programming model operate at a higher level of

abstraction than that presented by the hardware, this section also serves to simplify the description

of the hardware for the purposes of description in this document. This is required both to inform the

reader, as well as to establish some terminology.

3.1 Hardware Architecture

Figure 1: Assumed View of the ECOSCALE platform (Simplified)

Figure 1 shows the assumed architecture of the ECOSCALE platform, from a high level perspective. It

is made up of the following parts:

¶ CPU: a traditional general purpose processing unit, consisting of 4 parallel processing

elements.

¶ FPGA: a self-contained hardware processing unit, the architecture and functionality of which

is programmable and may be reconfigured at runtime.

¶ RAM: a traditional memory block.

¶ UNIMEM: A hardware interconnect with a software interface1 which will enable the

elements of a worker to transparently access memory located on RAM blocks either locally

on the same worker, or remotely on different workers.

¶ WORKER: a collection of 1 CPU, 1 FPGA, and 1 RAM block.

¶ NODE: a single hardware platform containing a collection of n workers. Although the

hardware will dictate the number of physical WORKERS per board, the exact number will be

a configurable parameter of the runtime.

1
 At the time of writing, the software interface to UNIMEM is under development in the ExaNest Horizon2020

project, and is expected to become available as the project progresses.

Page 11 of 35
This document is confidential, and was produced under the ECOSCALE project (EC contract 671632)

Within the ECOSCALE project, NODES should be networked together using the interconnect network

described in D3.1, as shown in Figure 2. The runtime will initially be developed on commodity

distributed hardware, and then specialised as required to map to the ECOSCALE hardware platform.

Figure 2: Networked Nodes

3.1.1 FPGA

As per requirements in D2.1, it is assumed that the FPGA is capable of supporting at least single

precision floating point arithmetic, but preferably also double precision floating point numbers.

The FPGA should provide enough memory (BRAM, DRAM) to hold the data required for any

computation to support the requirements of an application, such as the reservoir simulator or the

smart city. If not, the user must partition the application accordingly. Although the runtime will

provide default options to partition data, they should not be relied upon for efficient or consistently

correct operation. Section 4.2.2 describes this further.

As per descriptions in D3.1 and D3.2, an FPGA will be seen internally by the runtime in a similar

manner as a developer sees an OpenCL software device:

¶ There is a defined interface to interact with it.

o Conceptually similar to the OpenCL API

¶ The runtime will feed the FPGA with units of work and data.

o Conceptually similar to an OpenCL workqueue

¶ The FPGA will call back to the runtime when this work is complete.

o Conceptually similar to an OpenCL callback event

¶ The FPGA is responsible for executing work given to it and reporting when this work is

complete.

¶ The FPGA device will be composed of many autonomous reconfigurable units. These units

will represent the locations to which work is submitted.

o Each autonomous reconfigurable unit is conceptually similar to an OpenCL device

Page 12 of 35
This document is confidential, and was produced under the ECOSCALE project (EC contract 671632)

¶ Each unit of work (OpenCL workgroup or a set of workgroups) assigned to the FPGA will run

to completion once begun ς it cannot be preempted.

o OpenCL workgroups cannot be pre-empted

The interface to the FPGA will support the following operations:

¶ Initiate a reconfiguration of a reconfigurable unit at runtime when supplied with a legal

bitstream, otherwise report an error.

o Similar to an OpenCL clCreateKernel

¶ Upload a unit of workto the device

o Similar to an OpenCL clEnqueueNDRangeKernel

¶ Upload data to the device

o Similar to an OpenCL clmemcpy

¶ Retrieve data from the device.

o Similar to an OpenCL clmemcpy

¶ Register a callback function to indicate completion of work unit

o This should indicate the unit of work which has completed.

o This should indicate if the computation was successful or not.

o This should be invoked by the hardware at the completion of a unit of work

Á These features are similar to the generation of an OpenCL event

¶ Query the runtime state of each reconfigurable block indicating:

o Current operating status;

Á At least CRASHED or NOT_CRASHED

Á EXECUTING or NOT_EXECUTING

o The current hardware configuration.

o Number of queued work units.

o Currently executing work unit.

Á These operations are not all possible in OpenCL, but are necessary for

runtime scheduling

3.2 Operating Environment

The proposed PGAS nature of the UNIMEM environment of the ECOSCALE hardware platform means

that a single hardware platform may be separated into a number of different, isolated address

spaces. It is assumed that there will only be a single application executing at any one time within an

address space. Applications in different address spaces may not interact via UNIMEM.

Also, certain requirements, as noted in D2.1, rely on properties of the hardware architecture.

Specifically, the requirements in Section 4.3 with regard to interconnect latency, interconnect

throughput, memory bandwidth, and reconfiguration time. This document also assumes that these

guarantees can be provided by the hardware. Using the design of the hardware architecture, the

runtime will be designed to be as efficient as possible in order to achieve the metrics stated in D2.1.

An application will be written in the C language, although in the future it is anticipated that the

techniques described in this document will be available in other languages which currently support

OpenCL.

Page 13 of 35
This document is confidential, and was produced under the ECOSCALE project (EC contract 671632)

4 Programming Model
When considering a programming model there are two primary concerns: computation and data.

4.1 Computation
As stated in the ECOSCALE proposal, the OpenCL2 programming framework will be used as the basic

element to be built upon.

4.1.1 OpenCL

OpenCL is a programming framework (Figure 3) for heterogeneous and parallel computing. It is

standardised and is managed by the Khronos working group. In OpenCL, users are required to think

in terms of host and device code, where a host is a coordinator application on the CPU, and a device

is an accelerator. An accelerator may be a CPU, GPU, FPGA, or co-processor such as the Xeon Phi[5].

Given the increasing simplicity with which developers are able to program accelerators with OpenCL,

it is a prime candidate to explore exascale programming.

Figure 3: Architecture of the OpenCL Framework

4.1.1.1 OpenCL Configuration

In OpenCL, the host is tasked with setting up, dispatching, and collecting results from a device.

OpenCL is accessed through an API, which enables relatively low-level access to data types and

functions in order to program and interact with one or more accelerators. The following describes

the conventional approach to use OpenCL.

Creating an OpenCL environment consists of first querying the hardware at runtime to determine

the available vendor platforms and the devices available in each platform. Platforms are essentially

drivers provided by the hardware vendor, and the devices represent the actual accelerators. The

current set of supported accelerators are: CPU, GPU, ACCELERATOR, or ALL.

https://www.khronos.org/opencl

Page 14 of 35
This document is confidential, and was produced under the ECOSCALE project (EC contract 671632)

At this point a context must be created. A context is an umbrella structure that holds the device(s)

to be used, as well as other runtime software constructs. A command_queueis then associated with

each device and placed within the context. A command_queue is used to issue commands to a

device. Commands include device queries, memory management operations, and kernel

(Section4.1.1.2) invocations. After this, a user creates a program with the kernel source file, and

compiles it at runtime3. The specific function to be executed within the compiled source is then used

to create the kernel object. At this point the OpenCL environment has been constructed.

From here the user allocates memory on the device and then copies host data into this memory. The

device memory is then associated with the correct position in the kernel arguments. Then, the

number of dimensions upon which the kernel should work is calculated, and the kernel is launched

on the device, with this information, via the command_queue. Usually, the host then blocks

attempting to read data back from the device until it has finished its computation. Once all

computation is complete and the device is no longer required, there are appropriate destructor

functions. The device itself is treated simply as a functional unit. Data and code are passed to the

device, the device executes this code, and the results are read back by the host.

4.1.1.2 Kernels

1. __kernel void square(__global float * input, __global float * output, const un-

signed int count){
2. int i = get_global_id(0);
3. if (i < count)
4. output[i] = input[i] * input[i];
5. }

Listing 1: OpenCL Kernel to Compute the Square of an Input Array
4

A device runs a special piece of code known as a kernel. An OpenCL kernel is written in a C-like

syntax and represents the logic of a single thread. The number and groupings of threads are supplied

during the configuration stage on the host. These values are known as the localand globalworksizes,

and are used to optimise the allocation of threads to the underlying hardware for a given dataset.

Within a kernel, the currently executing thread may be identified via the API. This API can be used to

customise the kernel logic. The kernel is expressed as a function with parameters. Information for

the actual computation is passed to this function as arguments by the host.

The OpenCL model uses a memory hierarchy in which memory is split into global, local, private, and

constant regions. This is a direct mapping to the hardware configuration of memory found in GPUs,

however the same model is applied to all hardware devices. Global memory is shared amongst all

threads, local memory is shared between a specified group of threads, and private memory is

specific to a thread. Global and local memories are subject to unsynchronised modifications,

although there are mechanisms to synchronise accesses. Constant memory is shared by all threads,

but is read only. As the restrictions upon the memory increase, the latency in accessing it decreases.

Listing 1shows a simple kernel.

3
 Note that this model is changed in this work, as FPGA kernels are compiled at compiletime, not runtime.

4
 Formatted using http://www.planetb.ca/syntax-highlight-word

Page 15 of 35
This document is confidential, and was produced under the ECOSCALE project (EC contract 671632)

4.1.2 Proposed OpenCL Abstraction

Currently, OpenCL provides a software abstraction for an accelerator known as a device, where each

software device has a 1-to-1 relationship with an underlying hardware device. The current range of

software devices are DEFAULT, CPU, GPU, ACCELERATOR, ALL. The proposed extension will take

place in three steps. These steps also represent a timeline of increasing technical challenge and will

be tackled in order.

4.1.2.1 Step 1

Figure 4: Programmers view of a hardware device

The first step will be to provide location transparent access to accelerators ς i.e. accelerators located

on different workers will appear as though they are in the same physical worker, Figure 4, as

opposed to the actual hardware layout, as described in Figure 5. Note that in Figure 4, there is no

ƴƻǘƛƻƴ ƻŦ ŀ ²ƻǊƪŜǊ ƛƴ ǘƘŜ ƭƻƎƛŎŀƭ άǇǊƻƎǊŀƳƳŜǊέ ǾƛŜǿ ŀǘ ǘƘƛǎ ǇƻƛƴǘΦ

Figure 5: Real view of Hardware Devices

There will be no modifications required to the current OpenCL programming interface to achieve this

goal.

Page 16 of 35
This document is confidential, and was produced under the ECOSCALE project (EC contract 671632)

4.1.2.2 Step 2

In addition to providing direct access to the individual hardware accelerators in a location

transparent way, the ECOSCALE runtime intends to extend this device abstraction to include

aggregation of multiple hardware devices. Specifically,

¶ WORKER: Abstraction of the devices found in a worker: Figure 6, a)

The motivation for this new device is to enable a developer to submit work to a software device and

allow the runtime to best schedule the kernel computation amongst the hardware devices

abstracted by the software device. In this case, the CPU and FPGA. Scheduling is discussed further in

Section5.2. In this step, a kernel is the schedulable unit.

4.1.2.3 Step 3

At this stage two more OpenCL device types (or software devices) will be exposed to the

programmer:

¶ FPGA_S: Abstraction of one or more FPGA accelerators found in a node: Figure 6, b)

¶ CPU_S: Abstraction of one or more CPU accelerators (CPUs) found in a node: Figure 6, c)

These devices will abstract FPGAs or CPUs across multiple nodes, and will be beneficial in situations

where a single WORKER does not have either the computational or memory capacity to handle a

kernel. For each new software device, when being created the programmer will specify the

hardware devices which they will contain. Note that in b) and c) it is not required to have all

hardware devices of a particular type be part of the abstraction.

Page 17 of 35
This document is confidential, and was produced under the ECOSCALE project (EC contract 671632)

a) Worker Software

Device Abstraction

b) FPGA Software

Device Abstraction

c) CPU Software

Device Abstraction

d) Mixed Software

Device Abstraction

e) Underlying Hardware View

Figure 6: Software Abstractions

The logical progression of this approach is to include a NODE and CLUSTER software device, which

would consist of WORKERs and NODEs, respectively. Although linguistically this is a very achievable

goal, it is not clear if this would be an effective approach. Given that there are many cluster level

scheduling tools, such as slurm[6], it is uncertain if the CLUSTER abstraction would be required. This

is an open question and will be explored during the course of the work.

Figure 6 shows the different software abstractions within the context of a NODE, including the

composition of different abstractions in d). Again, the underlying hardware layout will be different,

as shown in e), but this will be abstracted to the programmer.

4.1.2.4 Integration

In order to locate and use such devices, the OpenCL cl_device_id type will be extended to support

the following values: CPU_S, FPGA_S, and WORKER. In this way, the developer can use all existing

OpenCL APIs. To specify more complicated properties of a desired software device, such as the

number of desired FPGAs, that only the CPU of a worker should be used, or the total memory

required in a group of CPU_S, the values returned by the existing clGetDeviceInfo() function will be

extended with additional properties, and the function can continue to be used in the normal

way.During the course of this project, documentation will be created and periodically updated

detailing exactly which new properties, and made available to the partners in this group.

In the case where the developer has selected a software device which abstracts a number of

different hardware devices, the runtime will make best efforts to schedule the computation on the

Page 18 of 35
This document is confidential, and was produced under the ECOSCALE project (EC contract 671632)

most appropriate number of metrics, which are described partially in Section5.2 and partially in

D3.2.However, in some cases the developer may know best where the specified kernel is most

suited to executing. In order to convey this information to the runtime, the programmer may

annotate their code:

1. #pragma eco <device type>
2. __kernel void square(__global float * input, __global float * output, const un-

signed int count){
3. int i = get_global_id(0);
4. if (i < count)
5. output[i] = input[i] * input[i];
6. }

Listing 2: Annotated Kernel Code

Listing 2 shows a simple kernel computation. On line 1 a pragma has been introduced to indicate to
the runtime that this code is most suitable to run on the indicated device type. The supported device
types will be CPU, GPU, FPGA. This annotation is optional, and if not specified, the runtime will make
best efforts to schedule the computation appropriately. To be explicit: CPU, FPGA, GPU are types of
hardware device. They are used here to suggest a suitable hardware platform for a kernel. CPU_S
and FPGA_S are OpenCL software devices which abstract one or more hardware devices. Kernels are
submitted to software devices.

All currently supported OpenCL functions and runtime (workgroup and workitem) ids will be

supported in the new runtime.

When an aggregate software device (CPU_S, FPGA_S, WORKER) is discovered and subsequently

assigned to a context, it may no longer be returned by the runtime in response to a ǇǊƻƎǊŀƳƳŜǊΩǎ

query. Once the aggregate software device is released, all of its hardware devices may again be

discovered. In this way, the runtime and programmer can reason about the system in a stable way.

This does have the effect of leaving hardware resources unused should a programmer not make the

most efficient use of the system. This approach will be further refined as the project progresses.

By expanding upon the OpenCL framework, this work will provide the user with extra functionality

which builds upon existing idioms, rather than introducing lots of new syntax and concepts. This also

has the advantage of increasing compatibility with legacy code. This approach will give the developer

the ability to either manually control all elements of the system, to enable the runtime to

automatically schedule computation, or gradients in-between.

4.2 Data
The placement of data in a heterogeneous hardware platform is a more difficult challenge than is

experienced by computation. This is because, computation, or the expression or computation, is a

static and self-contained entity. By comparison, the data involved in a computation can often not be

determined until the computation is being executed at runtime. Consequently, most programming

approaches acknowledge this issue, and leave the management of data as a responsibility of the

programmer. This work intends to do the same to an extent.

Page 19 of 35
This document is confidential, and was produced under the ECOSCALE project (EC contract 671632)

4.2.1 OpenCL Memory Model

OpenCL presents each device with a distinct memory region5, consequently, it requires that

programmers must manually move data between these regions. Concretely, a programmer must

allocate data on a host, allocate data on a device, copy the data from the host to the device, perform

a computation, and then copy any relevant data back to the host.

Briefly, the OpenCL programming model delegates all responsibility of data placement to the

programmer. The latest version of OpenCL does present a way to share allocated memory between

different devices, however, in order to develop the compiler for the FPGA, the most recent version

of OpenCL will not be used.

4.2.2 Proposed OpenCL Extension

4.2.2.1 Host Side Partitioning

Data partitioning is not required in steps 1 and 2, as entire kernels are being sent to execute on

single devices, even if the runtime is choosing this device, see Section 4.1.2. However, when kernels

are being executed across many devices, the user will need to indicate during device creation how

the data should be spread between them.

The data management set of extensions are to assist in partitioning and distributing the data across

multiple devices at runtime. OpenCL already enables a developer to specify how a computation

should be partitioned into workgroups. This work proposes a similar mechanism to help direct the

runtime to partition data. The runtime assumes input and output to kernels to be large contiguous

arrays of data. This assumption is based on requirements in D2.1.

In the default situation, the runtime can automatically partition the data.This is based on the

number of workgroups as either specified by the programmer, or inferred by the runtime. This will

dictate the number of data blocks which these arrays will be partitioned into, and works well when

work groups and work items access input and output data in order (e.g. the i-th work item of the j-th

work group accesses the j*WGsize+i-th element of its input vectors). Additionally, as with

conventional OpenCL, best results will be obtained when data is kept in local memory.

For more complicated situations, such as halo exchanges, the programmer will be presented with a

similar set of functionality as in Yan et al.[10].The work of Yan et al. gives a complete description and

motivation of these options. These options will be passed to the runtime by adding a modified

version of the existing memory allocation function to include a parameter to indicate the way in

which the data should be partitioned6:

¶ REPLICATE: all data should be replicated across all devices

¶ .[h/YғǎƛȊŜҔΥ ŀƭƭ Řŀǘŀ ǎƘƻǳƭŘ ōŜ ǎŜǇŀǊŀǘŜŘ ƛƴǘƻ ΨǎƛȊŜΩ ōƭƻŎƪǎ

¶ CYCLIC<size>: all data should be sŜǇŀǊŀǘŜŘ ƛƴǘƻ ΨǎƛȊŜΩ ōƭƻŎƪǎ ŀƴŘthen mapped to underlying

processing elements, in a round robin fashion.

5
 Note that each device region is further sub-divided into different region types as described in Section 4.1.1

6
 Note: although these strategies are fairly complete, they will be reviewed as the project continues.

Page 20 of 35
This document is confidential, and was produced under the ECOSCALE project (EC contract 671632)

¶ HALO: specify the data regions of a computation which will need to be shared between

different workgroups.

1. // Abstract Data Types
2. typedef struct mapping mapping;
3. typedef enum mapping_type mapping_type;
4.
5. struct mapping{
6. STRATEGY s;
7. union {
8. struct {
9. // relevant information for blocks
10. } block;
11. struct {
12. // relevant information for cyclic
13. }
14. struct {
15. //relevant information for halo
16. }
17. // other strategies to be added as necessary
18. }
19. };
20.
21. enum mapping_type{ REPLICATE, BLOCK, CYCLIC, HALO };
22.
23.
24.
25. // Host Code
26. int data[] = {...};
27.
28. // additional line to partition the data
29. mapping data_partition = ecoscale_partition(data, BLOCK, number_blocks);
30.
31. clCreateBuffer(context, data_partition,...);

Listing 3: Modified OpenCL Data Allocation

It is important to note that these OpenCL extensions are optional - i.e. the application will complete

successfully without them. The default strategy will be BLOCK, and will be facilitated by the runtime.

Thus, the burden on the developer is non-existent if desired. However, application performance in a

number of dimensions will improve with their use and likely suffer without them.

4.2.2.2 Kernel Side Partitioning

Once within the domain of a kernel, it is expected that a user will place data into local memory as

soon and efficiently as possible. This is normal practice for conventional OpenCL applications. The

consequence of not doing this is slow performance, especially when considering the implications of

step 3, described above.

4.3 Compilation

As the runtime will use OpenCL, kernels will be compiled at runtime for the CPU. The ECOSCALE

project will create a custom kernel compiler for an FPGA. This is part of WP5. As well as generating a

bitstream to be encoded onto the FPGA hardware from a kernel, the compiler will output metadata

describing the power, performance, and space consumed on the FPGA hardware. To enable the

scheduler to optimise for different metrics, the compiler will generate multiple bitstreams per

kernel, each optimised for a different metric. These configurations will be collected together in a

Page 21 of 35
This document is confidential, and was produced under the ECOSCALE project (EC contract 671632)

library and be made available to the runtime. Note that the compilation of FPGA kernels will occur at

compiletime, as opposed to conventional OpenCL, where kernel compilation occurs at runtime.

Compilation of applications for the ECOSCALE runtime will be performed in the same manner as

conventional OpenCL applications.

4.4 Summary

The proposed ECOSCALE programming model is a very limited set of extensions to the existing

OpenCL framework. This is done in order to enable greater acceptance in the future and easy

integration with legacy code.

From a computational perspective, thiswork will add new software device abstractions to the

OpenCL framework. These abstractions will give the developer the options of fine-grained manual

control of the hardware up to complete automation of scheduling of computation.

From a data perspective, this work will provide the developer with the tools to indicate the best

partitioning of data to enable the best performance of the application. Equally, there is no

requirement to do this, which places the burden on the runtime to give best effort service.

Page 22 of 35
This document is confidential, and was produced under the ECOSCALE project (EC contract 671632)

5 Runtime System
The following describes the runtime system which will execute applications on a distributed

heterogeneous hardware platform, such as the one being developed in ECOSCALE. As a principle, the

runtime intends to be as distributed as possible in all regards. Not only is this a step forward in the

state of the art, but it is necessary to enable scaling with the underlying hardware architecture.

5.1 Architecture

As described in Section3.1, the hardware platform will consist of several WORKERs located within a

NODE. One WORKER per NODE will be used as a controller. Each WORKER will run an operating

system and contain an ECOSCALE runtime, which will be executed on a dedicated CPU core. The

entire runtime is replicated on each node for robustness, see Section5.5. The runtime will be based

on an open source implementation of OpenCL (SnuCL[7]).

Figure 7: The ECOSCALE runtime architecture

An ECOSCALE runtime will consist of a communication library, a scheduler, a log of performance

metrics of previous executions, access to the FPGA bitstreams and their associated metrics

(Section4.3), and an online machine learning component, Figure 7. When initialised, the runtime will

be pointed to a library of FPGA bitstreams, as generated at compile time (Section 4.3).

5.2 Scheduling

Within this work, the novel hardware architecture presents the opportunity to explore two aspects

of scheduling. The first is hierarchical multi-level scheduling, and the second is individual scheduling

within an OpenCL device. Finding an appropriate balance between these two approaches is a

research goal of this work.

Given the myriad contributions that have been made in the area of software scheduling, this work

seeks to leverage as much existing technology as possible. This said, the presence of FPGA

accelerators presents a new and novel problem to be solved, particularly in terms of dynamic

runtime reconfiguration under the control of the scheduler.

Page 23 of 35
This document is confidential, and was produced under the ECOSCALE project (EC contract 671632)

5.2.1 Unit of Schedulability

As with the programming model, scheduling will be decomposed into three steps. As the user is in

complete control of dispatching kernels, there is no usage of the scheduler in step 1.In step 2 where

a kernel is submitted to a worker, the scheduler must decide on the best placement of the

computation between the CPU and FPGA, but this will still be at the level of an entire kernel. Step 3

is different and works as follows.

Conventional OpenCL deploys an entire kernel execution on a single device. Given that an average

OpenCL application has typically tens of kernels, this model does not enable full utilisation of a

hardware platform with thousands of devices. This would require a programmer to manually break

kernels into many smaller kernels, and schedule them. The use of kernels (as opposed to NDRanges)

is intentional as decomposing a kernel may require the modification of logic, rather than simply

running many NDRanges over smaller data sets.

Alternatively, this work proposes that in such situations, developers submit kernels to the new

software devices proposed in Section4.1.2, and that the runtime partition the kernels into

workgroups, which can be thousands, or even millions, for a single kernel. It is these workgroups

that will be scheduled across the different accelerators. This has three main advantages. Firstly, by

using a runtime scheduler, the best hardware platform can be found to execute a workgroup for a

given invocation. This placement may be different for different invocations. Secondly, the scheduler

will be able to schedule multiple workgroups as units, should this be required, whereas this is a non-

trivial task to accomplish manually in an application. Thirdly, as a workgroup is a smaller unit of work

compared to an entire kernel, it will be possible to interleave the execution of different workgroups

for greater device utilisation. Note that there is no requirement for workgroups to be from the same

kernel, although hardware limitations, e.g. reconfiguration time, may require or strongly

recommend this. Workgroups represent a compromise between scheduling individual work items

and entire kernels. The number of workgroups can be programmer defined, or automatically

inferred.

The ability to dynamically schedule OpenCL kernel workgroups across heterogeneous hardware

platforms is seen as a key research objective of this work.

5.2.2 Preemption

The ECOSCALE runtime will use a run to completion model. There are two reasons for this. Firstly,

although it is possible to provide preemption on FPGAs by time-multiplexing different workloads, the

process of context switching is slow, affecting the performance of the execution, thus nullifying the

performance gains of preemption [9]. Secondly, it is the workgroups of the kernels which will be

scheduled. These will have a shorter lifetime compared to the kernel as a whole. Consequently, it

will be possible to interleave the execution of different workgroups as they complete, without

requiring preemption.

5.2.3 Device Level Scheduling

In the first instance, each kernel will be scheduled as an entire unit, as is currently done. However,

given that average applications consist of tens of kernels, and current HPC platforms consist of

thousands or more hardware accelerators, this approach does not scale. Therefore, this work

proposes to schedule the workgroups of a kernel across many accelerators in order to concurrently

Page 24 of 35
This document is confidential, and was produced under the ECOSCALE project (EC contract 671632)

take advantage of as many hardware accelerators as possible. This corresponds to step 3 in the

programming model, and is expressed by Figure 8.

Figure 8: ECOSCALE Runtime Scheduling of Workgroupsacross Multiple WORKERs

As noted in Section4.1.2, this work presents three additional OpenCL device types. As these are

software devices, it is the responsibility of the runtime to schedule each workgroup invocation on an

accelerator. To make this decision, there are four primary categories that will be considered:

performance, power consumption, data locality, and feasibility.

Performance will be established in two ways. Firstly, the runtime will monitor kernel execution on

different hardware platforms and use this information for future scheduling decisions. Secondly, the

size of the input data will be used as a soft measure of the length of the computation. Unlike other

work which uses this information for entire kernels[4], this will need to be considered for each

workgroup.

Power consumption for the CPU will be directly monitored via hardware sensors, however, the FPGA

compiler will also provide power consumption estimations. As the configuration of the FPGA is being

precisely generated, this information will be highly accurate.

The third metric is data locality. As the scheduler is responsible for placing both the computation and

the partitioned data, it knows exactly where the data will be for the next kernel (set of workgroups)

invocation. As it is easier for the scheduler to move a few kilobytes of data representing the

computation, rather than the potential gigabytes of raw data for the computation, the scheduler will

focus on keeping data in the same physical location for as long as possible. This is similar to the

technique used in current GPU programming to reduce the cost of moving data. Although there will

be the option to replicate data across different devices, there may not be sufficient RAM space

available to do this. Also, even though UNIMEM will enable efficient data access and movement, it is

still better to not require data movement when possible.

Page 25 of 35
This document is confidential, and was produced under the ECOSCALE project (EC contract 671632)

Beyond these established metrics, the scheduler will also be optimising for power efficiency and

FPGA space occupancy. In order to achieve this, and the previous conditions, machine learning

techniques will be used to automatically choose the most appropriate accelerator for an execution.

Given that the goal is to classify each schedulable unit to the most appropriate hardware

accelerator, support vector machines (SVMs)[1] would be the most sensible approach. SVMs are

suited to classifying data into two classes. Many SVMs combined can partition data into multiple

classes. As the project progresses, the features which will be used in the classification will be

documented.

Although machine learning techniques have been used previously in conjunction with OpenCL[4],

these have been between a maximum of two devices, where each device was a CPU or a GPU. Given

the significant operational differences between a GPU and an FPGA, this work addresses a well-

defined advancement in the state-of-the-art.

5.3 Memory Architecture

In conventional OpenCL applications, placement of data within the memory is an important

consideration for the developer. When using an accelerator, the developer must manually handle

data movements between the host (usually a CPU) and the accelerator (usually a GPU). This is

required as the host and accelerator have different physical memory regions. Data movement is

often one of the greatest bottlenecks in terms of performance, and requires the careful attention of

the developer.

As noted in Section3.1, the ECOSCALE hardware will enable memory located in different WORKERs

to be accessed via DMA or remote load and store. It is the responsibility of the runtime to control

DMA transparently to the application, thus reducing the latency of memory accesses between

different RAM blocks within a NODE, and enable more flexible scheduling options.

As it is impossible to know the number and ordering of memory accesses at compiletime, the ability

to transport data around the hardware system for random (and planned) memory accesses is

important. Until such time as the ECOSCALE hardware platform is available and well-defined,

conventional memory orchestration techniques will be used ς MPI [3]. The runtime will use MPI

features such as scatter/gather to implement the partitioning policy, such as BLOCK or HALO, as

specified by the user.

5.3.1 Synchronisation via Memory Barriers

The current OpenCL standard states that barriers may only synchronise threads within the same

workgroup ς i.e. a barrier in one workgroup will not apply the work items in a different workgroup.

The runtime will support these semantics in any of the steps described above. This is also true of the

FPGA synthesis tools.

5.3.2 Memory Distribution and Coalescence

According to the partition that the programmer has supplied to the runtime via the API, the runtime

will spread the data across the hardware devices which are available within the software device as

the scheduler sees appropriate in accordance with the specified strategy.

Page 26 of 35
This document is confidential, and was produced under the ECOSCALE project (EC contract 671632)

Once a workgroup has completed its computation, the data in this and other workgroups will be

gathered back to the controller ƻǊ άƘƻƳŜ-ƴƻŘŜέ. Existing features of MPI will enable this

functionality.

Consistently pushing data from and pulling data towards a centralised controller is a natural

bottleneck. In the course of this work, we will measure the cost of this bottleneck, and explore

methods of mitigation. Indeed, it is strongly assumed that the runtime scheduler will be aware of

this, and schedule computation close to or at the same location as deployed data, thus removing or

at least minimising the cost of data transportation. This is particularly useful for kernels working as a

άǇƛǇŜƭƛƴŜέΦ

5.4 Data Synchronisation

There are two data sets which must be synchronised within the runtime. The data used in

computation, and the accounting data kept by the runtime.

5.4.1 Kernel Data Sets

In general, the applications described in D2.1 indicate that kernel datasets will only be accessed by a

single kernel. Assuming that this holds, the task of kernel data synchronisation is simplified as there

will not be concurrent access to data. The following will expand on this in more detail for the

different development steps.

In step 1, only a single device is being used, just as with conventional OpenCL. In this case, data will

be moved to a device and then read back, as the user instructs. There is no need to provide

synchronisation.

In step 2, the runtime decides where to execute a kernel within a worker. In this case, an entire

kernel will be executed on a device, and so the entire data set must be copied to that device. In this

case, synchronisation is not required.

In step 3, where kernels are decomposed and executed across multiple devicesthere is also no need

to provide extra synchronisation beyond what is already provided by the OpenCL model (Section

5.3.1). The existing OpenCL memory barriers only provide guarantees within the context of a

workgroup. As the unit of scheduling is the workgroup, the guarantees are sufficient, even in the

distributed case. It is the responsibility of the programmer to orchestrate their application using the

mechanisms available to provide greater guarantees.

For cases where data has been replicated, blocked, cycled or haloed (Section 4.2.2), it will be

necessary to safely coalesce the data back into its original form. To achieve this, the MPI provides a

number of operations, such as MPI_Gather, to bring the data back together.

5.4.2 Runtime Accounting Data

In order to inform the scheduling decision, reliable accounting data must be available. This data will

include the operational state of hardware devices, as well as the state of the per-worker schedulers.

At periodic intervals, each worker will communicate its hardware and software state to the root

node, one level up within the hierarchy. The precise frequency will be determined during

construction and testing. The specific of the frequency and exact details to be recorded will be

determined as the project progresses.

Page 27 of 35
This document is confidential, and was produced under the ECOSCALE project (EC contract 671632)

For steps 1 and 2, the main concern is that this information is logically ordered from each device, but

not across devices. This can be achieved via synchronisation numbers and timestamps within each

message. For step 3, where a single computation will span multiple devices, it will be necessary to

have some logical order across each device. Lamport clocks, or a suitable variant, will be used to

achieve this.

5.5 Resilience

As the size of the computation and the compute platform increases, it is increasingly necessary to

consider the effects of hardware, network, or software failures, and to provide some method of

mitigation. The ECOSCALE runtime is designed to address this with respect to continuity of

computation and continuity of data.

5.5.1 Computation

The ECOSCALE runtime is a centralised system with one WORKER as a dedicated master, and the

others as slaves. However, each worker will possess a full copy of the ECOSCALE runtime meaning

that each WORKER is capable of becoming the controller, even though it may be a slave. Also, one

WORKER will be nominated, at runtime via a leadership election, as a backup controller to monitor

the controller.

It is the responsibility of the master to monitor the health of each slave, and to respond

appropriately on failure detection. Failure is detected by either explicit failure messages

communicated by a slave, such as kernel compilation failure, or implicitly via the lack of heartbeat

messages from a slave. Here, each slave will periodically send a heartbeat message to the controller

indicating that it is still functional and responsive.

If the controller detects that a slave has failed, via one of the above methods, then no further work

will be dispatched to that WORKER, and all outstanding work will be reissued to other slaves. The

controller maintains accounting information on which computation is located on which WORKER.

This information is periodically saved to a file. As workgroups will run to completion, there is no

possibility to recover partially completed work, and the workgroup must be reissued. This failure is

also reported to a log file for an external manager (human or machine) to monitor.

Should the controller fail there are two possibilities. Firstly, if the backup detects that the controller

has failed, it assumes the role of controller, duplicating the accounting information of the controller,

performing an election to determine a new backup, and continues operation. The backup also notes

these events in a log file. Operation continues as normal. Secondly, if there is some catastrophic

failure, the system will crash. Computationally, the log of accounting information which the

controller has been logging, enables a checkpoint from which to restart computations.

As the NODEs in a system become networked together, this approach can be replicated up the

hierarchy.

5.5.2 Data

The most common way to ensure the continuity of data in the presences of errors is via some

distributed checkpoint/restart protocol[2]. This approach sees snapshots of data and computation

being taken at different points of an execution. Should an error occur, the data from the last

snapshot of the computation is recovered, and the execution restarted from the last known point. A

Page 28 of 35
This document is confidential, and was produced under the ECOSCALE project (EC contract 671632)

similar approach will be taken in this work, building on existing efforts in this direction[8]. Also, there

are existing techniques supplied by MPI which will need to be adapted for use in the runtime.

5.5.3 Programmer Impact

As far as possible, the runtime will automate the detection and mitigation of (software or hardware)

errors. However, as in the case of catastrophic failure, the programmer must be aware and be able

to take responsibility/action. For the cases where this is possible, the existing OpenCL error

mechanism will be used. A full list of possible errors will be created and made available to the

consortium as the project progresses.

Page 29 of 35
This document is confidential, and was produced under the ECOSCALE project (EC contract 671632)

6 Addressing the Requirements in D2.1
By assessing the contents of D2.1, the following notes the requirements which pertain to the

programming model and runtime, and describes how the requirements has either been met or

addressed:

¶ GEN_SYS_01

o The runtime system will record performance data and use this information with the

scheduler

¶ GEN_SYS_02

o Either the user manually (step 1) or the runtime automatically (step 2 & 3) will

enable the FPGA hardware to be reconfigured.

¶ GEN_SYS_03

o This document, as well as the planned document to be generated (as noted in this

document) will support developers of the applications.

¶ SC_IO_01

o The runtime is being designed to work on a Linux OS. Linux supports many different

hardware types, therefore, the runtime should be compatible with the requested

hardware.

¶ SC_SW_01

o As the runtime will execute on a Linux platform, there should be no impediment to

the use of existing video decompression libraries on a CPU, without the involvement

of the runtime.

¶ SC_COM_03

o Again, the runtime will execute on a Linux platform, therefore, the stated software

libraries should be compatible and able to interact with the runtime.

¶ ARCH_01

o There will be no element of the runtime that obstructs this requirement.

¶ ARCH_06

o There will be no limitation within the runtime that prevents the passing of virtual

memory addresses to the FPGA.

¶ ARCH_08

o The runtime also assumes that, where relevant, workgroups will run to completion.

Page 30 of 35
This document is confidential, and was produced under the ECOSCALE project (EC contract 671632)

7 Summary
This document is the deliverable for task T3.3: D3.3 Specification of System Software and

Programming Model. This document describes the design and specification of a programming model

for the distributed heterogeneous hardware platform being developed as part of the ECOSCALE

project, as well as a software runtime to execute applications expressed via the programming model

on this hardware platform.

The programming model is an extension of the OpenCL programming framework with new software

abstractions and data partition support. These extensions are mostly made within the current

OpenCL framework, with very minor, and optional, additions to facilitate integration. This has been

done so as to minimise the burden on the developer.

The runtime system will be based upon an existing distributed OpenCL runtime (SnuCL), and

extended to support the new abstractions presented in the programming model, as well as to

execute on a heterogeneous hardware platform, such as the one being developed as part of the

ECOSCALE project.

It is assumed that as the project progresses, the design decisions expressed in this document will be

adapted and amended as certain unforeseen application or hardware characteristics become

apparent.

Page 31 of 35
This document is confidential, and was produced under the ECOSCALE project (EC contract 671632)

8 References
[1] Bernhard E. Boser, Isabelle M. Guyon, and Vladimir N. Vapnik. A training algorithm for

optimal margin classifiers. In Proceedings of the Fifth Annual Workshop on Computational Learning

TheoryΣ /h[¢ ΩфнΣ ǇŀƎŜǎ мппς152, New York, NY, USA, 1992. ACM.

[2] E. N. (Mootaz) Elnozahy, Lorenzo Alvisi, Yi-Min Wang, and David B. Johnson. A survey of

rollback-recovery protocols in message-passing systems. ACM Comput. Surv., 34(3):375ς408,

September 2002.

[3] Message P Forum. MPI: A message-passing interface standard. Technical report, Knoxville,

TN, USA, 1994.

[4] Dominik Grewe, Zheng Wang, and Michael F. tΦ hΩ.ƻȅƭŜΦ hǇŜƴŎƭ ǘŀǎƪ ǇŀǊǘƛǘƛƻƴƛƴƎ ƛƴ ǘƘŜ

presence of gpu contention. In 26th International Workshop, LCPC 2013, San Jose, CA, USA,

September 25ς27, 2013., 2013.

[5] James Jeffers and James Reinders. Intel Xeon Phi Coprocessor High Performance

Programming. Newnes, 2013.

[6] Morris A. Jette, Andy B. Yoo, and Mark Grondona. Slurm: Simple linux utility for resource

management. In In Lecture Notes in Computer Science: Proceedings of Job Scheduling Strategies for

Parallel Processing (JSSPP) 2003, pages 44ς60. Springer-Verlag, 2002.

[7] Jungwon Kim, Sangmin Seo, Jun Lee, Jeongho Nah, Gangwon Jo, and Jaejin Lee. Snucl: An

opencl framework for heterogeneous cpu/gpu clusters. In Proceedings of the 26th ACM International

Conference on SupercomputingΣ L/{ ΩмнΣ ǇŀƎŜǎ опмς352, New York, NY, USA, 2012. ACM.

[8] A. G. Schmidt, B. Huang, R. Sass, and M. French. Checkpoint/restart and beyond: Resilient

high performance computing with fpgas. In Field-Programmable Custom Computing Machines

(FCCM), 2011 IEEE 19th Annual International Symposium on, pages 162ς169, May 2011.

[9] Steve Trimberger. Scheduling designs into a time-multiplexed fpga. In Proceedings of the

1998 ACM/SIGDA Sixth International Symposium on Field Programmable Gate ArraysΣ CtD! ΩфуΣ

pages 153ς160, New York, NY, USA, 1998. ACM.

[10] Yonghong Yan, Pei-Hung Lin, Chunhua Liao, Bronis R. de Supinski, and Daniel J. Quinlan.

Supporting multiple accelerators in high-level programming models. In Proceedings of the Sixth

International Workshop on Programming Models and Applications for Multicores and Manycores,

ta!a ΩмрΣ ǇŀƎŜǎ мтлς180, New York, NY, USA, 2015. ACM.

Page 32 of 35
This document is confidential, and was produced under the ECOSCALE project (EC contract 671632)

9 Appendix A: Worked Example
The following application represents the host code which invokes a matrix multiplication kernel on a

device. It has been modified to use the version of OpenCL proposed in this work.

The following listing describes lines of significant interest, and highlights the changes to an existing

application.

1. Line 11: Instead of CL_DEVICE_TYPE_DEFAULT, any of the device extensions from Section

4.1.2 may be used here.

2. Lines 45, 52, 57, 60: A new hardware platform will be added, known as ECOSCALE. In this

case, it is platform number 0 (line 8)

3. Line 71: Any device, including the new devices from Section 4.1.2, may be queried in the

normal manner. The new devices will return extra properties, to de described at a later date,

as noted in Section 4.1.2.

4. Lines 125, 127, 129: This shows to allocate data which is replicated across each device, as

discussed in 4.2.2.

1. #include <stdio.h>
2. #include <unistd.h>
3. #include <getopt.h>
4. #include <stdlib.h>
5. #include <assert.h>
6. #include <CL/opencl.h>
7.
8. #define ECOSCALE_PLATFORM 0
9. #define DEVICE 0
10. #ifndef DEVICE_TYPE
11. #define DEVICE_TYPE CL_DEVICE_TYPE_DEFAULT
12. #endif
13.
14. int main (int argc, char *argv[])
15. {
16. int matrix_dim = 1024; /* default matrix_dim */
17. int opt, option_index=0;
18. int ret;
19. int verbose = 0;
20. const char *input_file = NULL;
21. double *m1;
22. double *m2;
23. double *m3;
24.
25. cl_device_id device_id;
26. cl_context context;
27. cl_command_queue commands;
28. cl_program clProgram;
29. cl_kernel clKernel;
30.
31. cl_int errcode;
32.
33. FILE *kernelFile;
34. char *kernelSource;
35. size_t kernelLength;
36.
37. cl_mem d_m1;
38. cl_mem d_m2;
39. cl_mem d_m3;

Page 33 of 35
This document is confidential, and was produced under the ECOSCALE project (EC contract 671632)

40.
41. // Select a device and platform
42. cl_uint nPlatforms = 1;
43. char DeviceName[100];
44. cl_device_id* devices;
45. errcode = clGetPlatformIDs(0, NULL, &nPlatforms);
46. CHKERR(errcode, "Failed to get platform IDs. \ n");
47. if (nPlatforms <= 0) {
48. printf("No OpenCL platforms found. Exiting. \ n");
49. exit(0);
50. }
51. cl_platform_id *platforms = (cl_platform_id *) malloc(sizeof (cl_platform_id) *

nPlatforms);
52. errcode = clGetPlatformIDs(nPlatforms, platforms, NULL);
53. CHKERR(errcode, "Failed to get platform IDs. \ n");
54.
55. cl_uint nDevices = 1;
56. char platformName[100];
57. errcode = clGetPlatformInfo(platforms[ECOSCALE_PLATFORM], CL_PLATFORM_VENDOR, si

zeof (platformName), platformName, NULL);
58. CHKERR(errcode, "Failed to get Platform Information. \ n");
59.
60. errcode = clGetDeviceIDs(platforms[PLATFORM], DEVICE_TYPE, 0, NULL, &nDevices);

61. CHKERR(errcode, "Failed to get device IDs. \ n");
62.
63. if (nDevices <= 0) {
64. printf("No OpenCL Device found. Exiting. \ n");
65. exit(0);
66. }
67. devices = (cl_device_id *) malloc(sizeof (cl_device_id) * nDevices);
68. errcode = clGetDeviceIDs(platforms[PLATFORM], DEVICE_TYPE, nDevices, devices, NU

LL);
69. CHKERR(errcode, "Failed to get device IDs. \ n");
70.
71. errcode = clGetDeviceInfo(devices[DEVICE], CL_DEVICE_NAME, sizeof (Devic eName),

DeviceName, NULL);
72. CHKERR(errcode, "Failed to get device information. \ n");
73.
74. device_id = devices[DEVICE];
75.
76. // Create a compute context
77. context = clCreateContext(0, 1, &device_id, NULL, NULL, &errcode);
78. CHKERR(errcode, "Failed to create a compute context!");
79.
80. // Create a command queue
81. commands = clCreateCommandQueue(context, device_id, CL_QUEUE_PROFILING_ENABLE, &

errcode);
82. CHKERR(errcode, "Failed to create a command queue!");
83.
84.
85. if (input_file) {
86. ret = create_matrices_from_file(&m1, &m2, &m3, input_file, &matrix_dim);
87. if (!ret) {
88. fprintf(stderr, "error create matrix from file %s\ n" , input_file);
89. exit(EXIT_FAILURE);
90. }
91. } else {
92. printf("No input file specified! \ n");
93. exit(EXIT_FAILURE);
94. }
95.
96. kernelFile = fopen("mm_kernel.cl" , "r");
97. fseek(kernelFile, 0, SEEK_END);
98. kernelLength = (size_t) ftell(kernelFile);
99. kernelSource = (char *) malloc(sizeof (char)*kernelLength);

Page 34 of 35
This document is confidential, and was produced under the ECOSCALE project (EC contract 671632)

100. rewind(kernelFile);
101. fread((void *) kernelSource, kernelLength, 1, kernelFile);
102. fclose(kernelFile);
103.
104. clProgram = clCreateProgramWithSource(context, 1, (const char **) &kernelSource

, &kernelLength, &errcode);
105. CHKERR(errcode, "Failed to create program with source!");
106.
107. free(kernelSource);
108. errcode = clBuildProgram(clProgram, 1, &device_id, NULL, NULL, NULL);
109. if (errcode == CL_BUILD_PROGRAM_FAILURE)
110. {
111. char *log;
112. size_t logLength;
113. errcode = clGetProgramBuildInfo(clProgram, device_id, CL_PROGRAM_BUILD_LOG,

 0, NULL, &logLength);
114. log = (char *) malloc(sizeof (char)*logLength);
115. errcode = clGetProgramBuildInfo(clProgram, device_id, CL_PROGRAM_BUILD_LOG,

 logLength, (void *) log, NULL);
116. fprintf(stderr, "Kernel build error! Log: \ n%s", log);
117. free(log);
118. return 0;
119. }
120. CHKERR(errcode, "Failed to build program!");
121.
122. clKernel = clCreateKernel(clProgram, "multiply" , &errcode);
123. CHKERR(errcode, "Failed to create kernel!");
124.
125. d_m1 = clCreateBuffer(context, CL_MEM_READ_WRITE, matrix_dim*matrix_dim* sizeof (

double), NULL, ecoscale_partition(d_m1, REPLICATE, 0) , &errcode);
126. CHKERR(errcode, "Failed to create buffer!");
127. d_m2 = clCreateBuffer(context, CL_MEM_READ_WRITE, matrix_dim*matrix_dim* sizeof (

double), NULL, ecoscale_partition(d_m2, REPLICATE, 0) , &errcode);
128. CHKERR(errcode, "Failed to create buffer!");
129. d_m3 = clCreateBuffer(context, CL_MEM_READ_WRITE, matrix_dim*matrix_dim* sizeof (

double), NULL, ecoscale_partition(d_m3, REPLICATE, 0) , &errcode);
130. CHKERR(errcode, "Failed to create buffer!");
131.
132. errcode = clEnqueueWriteBuffer(commands, d_m1, CL_TRUE, 0, matrix_dim*matrix_di

m*sizeof (double), (void *) m1, 0, NULL, NULL);
133. CHKERR(errcode, "Failed to enqueue write buffer!");
134. errcode = clEnqueueWriteBuff er(commands, d_m2, CL_TRUE, 0, matrix_dim*matrix_di

m*sizeof (double), (void *) m2, 0, NULL, NULL);
135. CHKERR(errcode, "Failed to enqueue write buffer!");
136.
137. clFinish(commands);
138.
139. size_t globalWorkSize[2];
140.
141. errcode = clSetKernelArg(clKernel, 0, sizeof (cl_mem), (void *) &d_m1);
142. errcode |= clSetKernelArg(clKernel, 1, sizeof (cl_mem), (void *) &d_m2);
143. errcode |= clSetKernelArg(clKernel, 2, sizeof (cl_mem), (void *) &d_m3);
144. errcode |= clSetKe rnelArg(clKernel, 3, sizeof (int), (void *) &matrix_dim);
145. CHKERR(errcode, "Failed to set kernel arguments!");
146.
147. globalWorkSize[0] = matrix_dim;
148. globalWorkSize[1] = matrix_dim;
149.
150. errcode = clEnqueueNDRangeKernel(commands, clKernel, 2, NULL, globalWorkSize, N

ULL, 0, NULL, NULL);
151. clFinish(commands);
152. CHKERR(errcode, "Failed to enqueue kernel!");
153.
154.
155. errcode = clEnqueueReadBuffer(commands, d_m3, CL_TRUE, 0, matrix_dim*matrix_dim

* sizeof (double), (void *) m3, 0, NULL, NULL);

Page 35 of 35
This document is confidential, and was produced under the ECOSCALE project (EC contract 671632)

156. clFinish(commands);
157.
158.
159. clReleaseMemObject(d_m1);
160. clReleaseMemObject(d_m2);
161. clReleaseMemObject(d_m3);
162.
163. if (verbose){
164. print_matrix(m1, matrix_dim);
165. print_matrix(m2 , matrix_dim);
166. print_matrix(m3, matrix_dim);
167. }
168.
169. clReleaseKernel(clKernel);
170. clReleaseProgram(clProgram);
171. clReleaseCommandQueue(commands);
172. clReleaseContext(context);
173.
174. free(m1);
175. free(m2);
176. free(m3);
177.
178. return EXIT_SUCCESS;
179. }

	BIB__bib
	BIB_boser_3a1992_3atao_3a130385_2e130401
	B4B_boser_3a1992_3atao_3a130385_2e130401
	BIB_elnozahy_3a2002_3asrp_3a568522_2e568
	B4B_elnozahy_3a2002_3asrp_3a568522_2e568
	BIB_forum_3a1994_3ammi_3a898758
	B4B_forum_3a1994_3ammi_3a898758
	BIB_2013_2dopencl_2dgpu_2dpartition
	B4B_2013_2dopencl_2dgpu_2dpartition
	BIB_jeffers2013intel
	B4B_jeffers2013intel
	BIB_jette02slurm_3asimple
	B4B_jette02slurm_3asimple
	BIB_kim_3a2012_3asof_3a2304576_2e2304623
	B4B_kim_3a2012_3asof_3a2304576_2e2304623
	BIB_5771268
	B4B_5771268
	BIB_trimberger_3a1998_3asdt_3a275107_2e2
	B4B_trimberger_3a1998_3asdt_3a275107_2e2
	BIB_yan_3a2015_3asma_3a2712386_2e2712405
	B4B_yan_3a2015_3asma_3a2712386_2e2712405

